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Systems biology and gene networks
In neurodevelopmental and
neurodegenerative disorders

Large-scale genetic association studies have begun to
unravel the genetic architecture of neurodevelopmental
and neurodegenerative disorders and have found that
hundreds to thousands of genetic loci are involved in
disease risk’. To understand how genetic variants con-
tribute to disease, neuroscientists are faced with the
task of measuring and understanding phenotypes in the
central nervous system (CNS), a hierarchically organ-
ized complex system (FIG. 1a). This leads to a reliance on
models that only account for a few features of the CNS
at a time, as is done in most laboratory experiments.
Although this has been fruitful for some highly pen-
etrant variants that yield clear phenotypes, it has been
less successful for genetically complex diseases.

To understand how genes contribute to CNS phe-
notypes, it is necessary to adopt rigorous data-driven
frameworks that operate at a systems or a network
level**. Methods have recently become available that
permit the measurement of large-scale molecular*?,
cellular® and circuit-level® phenotypes, and additional
methods are currently in development’. One goal of
these approaches is to connect genetic risk and mecha-
nism by combining a molecular systems or integrative
network approach with systems neuroscience to understand
the molecular regulatory networks and pathways that
underlie circuit function, behaviour and cognition in
health and disease. Collaborative and consortium-level
efforts have made substantial progress by mapping tran-
scriptomic, epigenomic and proteomic landscapes in the

Neelroop N. Parikshak'?, Michael J. Gandal'-* and Daniel H. Geschwind'~*

Abstract | Genetic and genomic approaches have implicated hundreds of genetic loci in
neurodevelopmental disorders and neurodegeneration, but mechanistic understanding
continues to lag behind the pace of gene discovery. Understanding the role of specific
genetic variants in the brain involves dissecting a functional hierarchy that encompasses
molecular pathways, diverse cell types, neural circuits and, ultimately, cognition and
behaviour. With a focus on transcriptomics, this Review discusses how high-throughput
molecular, integrative and network approaches inform disease biology by placing human
genetics in a molecular systems and neurobiological context. We provide a framework for
interpreting network biology studies and leveraging big genomics data sets in neurobiology.

brain®°. Recent important advances include the evalua-
tion of spatial and temporal transcriptomes by the Allen
Brain Institute and BrainSpan®''"3, the quantification
of the epigenetic landscape in CNS tissue and cell types
by the Roadmap Epigenomics Mapping Consortium',
and the integration of genetic variation with gene expres-
sion in the brain by the Genotype-Tissue Expression
(GTEx) project', as well as others'®"”. These efforts
have provided the first systematic view of the immensely
complex molecular landscape across brain development,
between brain regions and among major cell types
(FIG. 1b). However, the molecular signatures of specific
cell types, finer-grained temporal dynamics and causal
or reactive alterations in CNS diseases remain mostly
uncharacterized (FIG. 1c). Nevertheless, these new
resources serve as an important foundation and proof of
the value of such tissue- and stage-specific profiling data.

Molecular profiling and network approaches in
disease-relevant neuroscience research face several
major challenges when applied to the CNS: the com-
plexity of molecular phenotypes owing to cell type,
spatial and temporal heterogeneity throughout nervous
system development and maturation (BOX 1); a dearth of
human tissue and model systems with definitive human
relevance (the ‘translational’ and ‘evolutionary’ prob-
lems*'*'%); and poor knowledge of appropriate interme-
diate phenotypes to measure. Although these challenges
are not unique to studying the CNS, neuroscience has
historically struggled with each of them owing to the
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< Figure 1| Molecular systems and the neurobiological hierarchy. a|Genetic variants
exert their effects on cognitive and behavioural phenotypes associated with
neurodevelopmental or neurodegenerative disease through a neurobiological hierarchy
that includes multiple molecular levels (transcriptomic, proteomic and epigenomic) that
can be modelled as networks on the basis of physical interactions and correlations within

and across multiple molecular levels (BOX 2). These molecular levels of organization can
vary at multiple neurobiological phenotypic levels (cells, circuits, and cognition and
behaviour) across the lifespan. b | Gene expression levels vary dramatically across
development and ageing, brain regions and cell types, as illustrated by three genes:
SMARCC2, which is a pan-regional neurodevelopmental gene; MET, a regionally
patterned adult neuronal gene; and OLIG1, a gene most highly expressed in white matter
and oligodendrocytes. Development and ageing data are from BrainCloud", regional
data are from Braineac'® and cell type expression data are from fluorescent-activated cell
sorted transcriptomes from mouse cortex'® (http://web.stanford.edu/group/barres_lab/
brain_rnaseg.html). ¢ | Both the molecular and phenotypic levels exhibit a typical
trajectory with normal variation during development and ageing that can be altered in
disease, resulting in abnormal temporal trajectories. The x axis on this plot reflects the
progression of time, and the y axis reflects theoretical deviation from the normal
trajectory for any molecular or phenotypic measurement. CPi, inner cortical plate; CPo,
outer cortical plate; CRBL, cerebellum; FCTX, frontal cortex; HIPP, hippocampus; ISVZ,
inner subventricular zone; IZ, intermediate zone; IncRNA, long noncoding RNA; MEDU,
brainstem medulla; miRNA, microRNA; OCTX, occipital cortex; OSVZ, outer
subventricular zone; PUTM, putamen; SNIG, substantia nigra; SP, subplate; TCTX,
temporal cortex; THAL, thalamus; VZ, ventricular zone; WHMT, subcortical white matter.

Molecular systems or
integrative network
approach

Systems biology methods

that use high-throughput
quantification, analysis and
interpretation of the molecular
relationships within and across
molecular levels, including

the genome, transcriptome,
epigenome, proteome and
other ‘omes’.

Systems neuroscience
An area of neuroscience
that focuses on short-
and long-range circuits
that are usually related

to specific behavioral or
cognitive functions (vision,
motor function, attention
and so on).

Gene network

A graph consisting of genes as
nodes connected by edges
that represent relationships
between genes.

Differential gene expression
analysis

(DGE analysis). An approach
commonly used in
transcriptomic studies that
serially compares thousands
of genes between groups

(for example, disease and
controls) to evaluate the mean
difference and its significance
for each gene independently.

extent that they affect the ability to link molecular func-
tion to behavior and cognition. Foundational aspects of
each point have not been agreed: the definition of a cell
type in the brain remains controversial®**; the relation-
ships of human disease phenotypes to developmental
trajectories are relatively unknown; model systems in
many neurobiological studies are often chosen on the
basis of convenience and history; and most phenotypes
are based on clinical and behavioural symptomatology
rather than on biological mechanism or aetiology? 2.

In this Review, we provide an overview of integrative
genomics approaches that have been applied to under-
stand the basis of CNS disorders, and we anchor this
discussion around transcriptomics (BOX 1). However, the
themes discussed can be generalized to genomic, prot-
eomic and epigenomic methods. We describe how large-
scale molecular data sets and gene network approaches
provide organizing principles that permit the develop-
ment of testable hypotheses on a genome-wide scale. We
discuss new insights into neurodevelopmental disorders
and neurodegenerative diseases from these studies,
highlight emerging themes and provide recommen-
dations for designing and executing future molecular
profiling studies.

Network biology and transcriptomics in the brain

Despite challenges in studying the CNS, dozens of
informative transcriptional analyses of neurodevelop-
mental and neurodegenerative disorders have been car-
ried out in the human brain. A major challenge, which
has mostly been surmounted at the theoretical level
and which now requires reduction to practice, has been
measuring and identifying which genes are altered in
disease in specific cells, circuits and regions. Differential
gene expression analysis (DGE analysis) addresses this
issue, albeit one gene at a time, but does not take into
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account the relationships between genes. This leads to
additional challenges, including the interpretation of
long lists of differentially expressed genes and integra-
tion of DGE sets with other data. Network methods
(BOX 2) relate genes to each other using the measured
or predicted relationships between them* and provide
an essential organizing framework that places each gene
in the context of its molecular system. Gene network
methods are now being applied to integrate genetics
with transcriptomics, epigenomics and proteomics to
identify causal molecular drivers of cellular, circuit-
level and brain-wide pathology in disease. We review
the principles of network analysis below and also
delve into applications of molecular systems and inte-
grative network approaches in neuropsychiatric and
neurodegenerative disease.

Networks organize biology. For gene expression studies,
co-expression network analysis leverages the fact that
gene expression reflects the state of the cellular or tissue
system that is being analysed®. A major advantage of
network analysis over DGE analysis is that it can iden-
tify multiple levels of molecular organization within
the hierarchy of brain region, cell type, organelle and
molecular pathways using only transcriptional data,
and can thus enable integration with other information,
such as known pathway annotations, protein interactions
and other molecular profiling data'"'>**%” (80X 1; FIC. 2a).
Furthermore, when thousands of genes might be differ-
ential between conditions, network analysis can subdi-
vide changes into smaller, more biologically coherent
sets of modules for further experimental analyses.
Networks organize genome-wide molecular data by
modelling molecules as nodes (typically genes or gene
products) and the relationships between nodes as edges.
Edges are not necessarily physical interactions — they
may also reflect statistical similarity (for example, corre-
lation or mutual information), computational inference or
combinations of these edge types (FIC. 2b). Edges define
the connectivity of nodes to each other in a network, and
this connectivity can be used to organize and analyse
the nodes. Many biological networks have a hierarchical
structure such that their nodes can be organized into a
relatively small collection of highly interconnected mod-
ules*?®? (FIC. 2¢). Inter-modular connectivity reflects a
higher-order structure of biological relationships in
a gene network, and intra-modular connectivity can
identify which genes are biological hubs within modules.
In co-expression networks, hubs are highly connected
genes; being a hub is an indication of the importance of a
gene in the process of interest. Hubs can be key molecu-
lar drivers, such as transcriptional regulators that drive
co-expression®”*!, or they may annotate a module by
reflecting the predominant biological role of the module.
For example, when evaluating co-expression across brain
regions, hubs in modules that are associated with spe-
cific regions, such as the cerebellum, are usually markers
for predominant cell types, such as granule cells''>%632,
Modularity is very useful, and although it provides
a general organizing principle in biology, it need not be
present in all constructed networks, and network biology
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Box 1 | The unique cytoarchitecture and development of the brain

Most neurodevelopmental and neurodegenerative disorders are defined by
perturbations in specific cognitive and/or behavioural domains, pointing to a selective
vulnerability of specific cells. Regional and cellular heterogeneity pose obstacles for
transcriptomic studies in the central nervous system (CNS)°2%, but whole-tissue
investigations in post-mortem human brain tissue are essential for identifying
human-relevant global changes. These changes can be compared across regions to
identify the most vulnerable regions and time points for further investigation. In
general, the value of whole-tissue profiling in post-mortem brain tissue depends on
the disease. In neurodevelopmental disorders, the specific brain regions, cell types or
time points that are most affected remain poorly defined and whole-tissue profiling
still holds great value. By contrast, for many neurodegenerative diseases, the selective
death of certain cellular populations and the infiltration of inflammatory cells is well
characterized, so transcriptomic studies focusing on sorted cellular populations are
now necessary to identify new associations with disease.

To maximize neurobiological understanding from whole-tissue profiles, global
changes can be related to cell type-specific gene expression profiles’®3#149163201 and
targeted experiments can be carried out to identify novel insights, as highlighted by
several recent studies?*?%. However, it will be impossible to study disease-affected
cell types without a complete knowledge of cell identities in normal brain
development and ageing. A priority is to develop a complete knowledge of the cellular
identity and cytoarchitectural changes that occur over time. This will necessitate
surveying the diversity of cellular types and deciphering their molecular identities
using single-cell approaches?®2%,

Additionally, neuronal gene expression and epigenetic programmes also undergo
changes at finer spatial and temporal scales, including changes induced by
activity-dependent transcription in the nucleus and translation?® at the synapse.
Locally regulated translation of these subcellular transcriptomes?'® has a crucial role in
synaptic function and plasticity?**. Deeper characterization of these events at a high
spatiotemporal resolution in normal brains followed by integration with coarser
profiles from specific diseases will identify cellular compartments and mechanisms for
more targeted study that are currently missed. Network approaches are particularly
useful for relating whole-tissue-level changes to data from these high-resolution
experiments!=3% (FIC. 2a).

Modules

Also known as clusters, cliques
and communities. Highly
interconnected subsets of
genes in a gene network;

for example, genes in a
transcriptomic network
sharing highly similar patterns
of gene expression.

Nodes

Molecular entities that
constitute a network; for
example, genes in a gene
network or proteins in a
protein interaction network.

Edges

The relationships between
nodes in a network delineating
some measure of shared
function; for example,
correlations or physical
interactions.

Mutual information

A measure of dependence
between two variables that can
capture complex relationships,
including nonlinear and
nonmonotonic patterns, that
could be missed by linear
correlation measures.

provides many module-free analytical approaches; for
example, nodes can be organized in relation to each other
by ranking direct and indirect connectivity. If two gene
products share an edge, they are said to be neighbours
in the network; the more highly interconnected, the closer
the neighbours. Thus, gene products that are involved in
an unknown cell type or biological process can be anno-
tated on the basis of their proximity to marker genes of
known function (‘guilt by association’)******. Additionally,
both modularity and connectivity rankings can be com-
pared between studies to assess whether they are pre-
served®, and how a module or the position of specific
genes within a module change in health and disease
can be evaluated to prioritize those that show the most
significant changes for further evaluation®-*".

Different approaches to gene co-expression. The most
common workflow in gene co-expression network
analysis in neuroscience involves the construction of
co-expression relationships from microarray or RNA
sequencing (RNA-seq) data, identifying modules and then
annotating modules on the basis of the known function of
module hubs, enrichment for gene sets and module-level
association with biological factors such as disease (FIG. 2a).
Discussion of the various options and the technical mer-
its of specific network approaches is beyond the scope
of this Review***!. Comparisons among methods have

indicated several important points: weighted networks are
more reproducible and powerful than binary networks*;
signed networks are more predictive of protein interac-
tions and shared pathway relationships than unsigned
networks*®*%; weighted networks constructed with the
topological overlap of correlation (for example, by weighted
gene co-expression network analysis (WGCNA)***) have
similar sensitivity and specificity for detecting true net-
work structure for experiments involving monotonic
relationships as do networks constructed with nonlin-
ear association measures such as mutual information
(for example, by the Algorithm for the Reconstruction
of Accurate Cellular Networks (ARACNE)*)*%; and
edge relationships using mutual information or other
association measures might be necessary to accurately
detect modules in time-series data, which can be non-
monotonic*®~*, Differential co-expression or connectivity
methods*?* are additional means for determining gene
connectivity changes between conditions and can identify
disruption or gain of function in pathways.

We provide guidelines in BOX 3 to aid co-expression
network reproducibility regardless of the method used.
Importantly, the replication of major conclusions in
independent data and experimental validation lend the
greatest confidence to a network analysis. There is a need
for studies that rigorously compare network analysis in
human CNS transcriptome data using experimental vali-
dation as a gold standard, similar to what has been done
in the Dialogue on Reverse Engineering Assessment
and Methods (DREAM) regulatory network inference
challenge®”. The DREAM challenge identified that
the integration of multiple network methods yields the
most robust regulatory relationship predictions*. This
leveraged the availability of hundreds of gene expression
profiles in single-cell organisms (bacteria and yeast) and
compared regulatory predictions between methods with
gold standard experimental validations. Building such
regulatory networks in complex tissues such as the CNS
is a step beyond current co-expression networks in the
brain. Large amounts of data, ideally from homogene-
ous cellular populations, are necessary to systematically
and accurately predict gene regulatory relationships in
network studies.

Literature-curated data. There are many databases
that aggregate experiments to construct genome-wide
data sets that can be utilized for network construction
(TABLE 1). Gene networks that are built on data that con-
tain even a small fraction of literature-curated compo-
nents can contain substantial bias. Furthermore, when
data are from non-neuronal tissue, the database may con-
tain relationships not found in neural tissues (TABLE 1).
Although reliant on data from non-neuronal tissue, path-
way databases such as the Gene Ontology (GO™), the
Kyoto Encyclopaedia of Genes and Genome Elements
(KEGG""), Ingenuity Pathway Analyses and MetaCore
are valuable for evaluating specific genes and pathways.
However, networks with edges that are derived from
shared pathway membership can reflect cellular states
that might not be found in the CNS, and they will cer-
tainly lack many important CNS-specific relationships.
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Box 2 | A framework for interpreting gene network analysis

Molecular profiling data can be modelled as a network in which molecules or gene
products are nodes and their functional relationships with each other are edges.
Gene network analysis can be summarized in five basic steps.

Node specification

Seeded (prior-based) networks have nodes that are selected using prior knowledge,
such as genetic variants that are associated with a disorder, and unseeded
(genome-wide) networks use all available measurements from the genome.

Edge specification

In order to define edges, studies need to include one or more of the following:
experimentally observed pairwise statistical relationships?>?!#*'3 evaluating shared
patterns of molecular levels across experiments, such as co-expression; experimentally
observed or literature-curated physical interactions, such as protein interactions from
immunoprecipitation and yeast two-hybrid (Y2H) experiments; or computationally
predicted relationships, such as transcription factor binding based on DNA motifs.
Notably, edges are susceptible to ascertainment biases**?'*?!> and confounding factors
that can induce spurious relationships!’® (FIC. 2b).

Module identification

Modules are identified from an adjacency matrix to simplify biological relationships at a
higher-order level, identifying interacting or highly correlated gene products (FIC. 2¢).
Assessing node connectivity or position within the module can identify hubs and
enables the comparison of changes between health and disease at the module level.

Annotation of modules or gene connectivity

There are several common approaches to annotate modules. External measures of gene
importance (such as cell type specificity or genome-wide association study (GWAS)
signals) can be related to module membership, intra-modular connectivity or
network-wide gene connectivity. Module summary or hub gene measurements, such as

module eigengenes or average expression levels, can be associated with biological traits.

Any differential gene expression (DGE) test that can be applied at a single-gene level can
be applied to module-level summaries, such as eigengenes. Module-level association
reduces the problem of multiple comparisons, as there are far fewer modules than genes
in a network. The preservation or changes in network connectivity for specific genes or
modules can be assessed between health and disease. Data can be integrated at the edge

level or the module level across biological levels, such as different cell types or brain
regions, or different regulatory levels, such as gene expression and ChlP-seq signals.

Validation

The crucialissue of reproducibility is addressed by validating network observations in
independent data or experiments (BOX 3; TABLE 1). Biological validation may involve
experimental testing of mechanistic predictions.

Hubs

Genes in a network or module
that are highly connected; that
is, they have a relatively high
number of edges compared
with other genes.

RNA sequencing

(RNA-seq). An assay for
measuring RNA transcript
levels in a genome-wide
manner that involves the
extraction of RNA followed by
construction of cDNA libraries
that undergo high-throughput
sequencing.

Weighted networks
Networks in which the edges
have continuous values, with
higher values reflecting an
increased strength or
probability of connectivity.

In a worst-case scenario, hubs in these networks may
be the most studied genes in other areas of biology, and
therefore may not reflect neurobiological relevance. It
is therefore important to distinguish between networks
that are constructed using edges from pathway data-
bases and those using edges derived from tissue-specific
primary molecular profiling experiments.
Protein-protein interaction (PPI) databases, which
compile known physical interactions between proteins,
are another example of literature-curated data. PPI
experiments may focus on a few proteins and evaluate
interactions in a tissue-specific manner using co-immu-
noprecipitation followed by proteomics. Alternatively,
most genome-wide PPI experiments use methods such
as yeast two-hybrid (Y2H) screens or tandem affinity
purification and are cell type agnostic. The genome-
wide approaches yield many more interactions, so most
databases typically combine both target-focused and
genome-wide experiments®. Similar to pathway data-
bases, these PPI data sets are biased to highly studied
gene categories (for example, those implicated in cancer

REVIEWS

biology) and are still generally incomplete> (TABLE 1).
A particularly salient example of the utility of defining
tissue-relevant networks is the power obtained by using
PPIs derived from cardiac tissue to identify new human
loci for long QT syndrome™. To reduce bias and improve
tissue specificity for genome-wide networks in the
absence of tissue-specific PPIs, one approach is to inter-
sect tissue-specific RNA expression or co-expression
with literature-curated PPI data®*°.

These considerations also apply to other physical inter-
action data, including CLIP-seq, ChIP-seq and miRNA
binding data, unless they come from experiments using
relevant tissues®’. Computational approaches to predict
physical interactions can partly circumvent bias (TABLE 1),
but they do not address tissue specificity, and there
may be relatively low reproducibility across different
methods ***. There is compelling evidence that using DNase
hypersensitivity or ATAC-seq data to infer open chromatin,
followed by combining transcription factor binding with
open chromatin footprinting, can provide a powerful and
comprehensive way to identify tissue-specific transcription
factor regulation®®'. The increasing availability of large
amounts of relevant data sets within the public domain'**
now permits the evaluation of network modules for com-
plex regulatory relationships by combining network
edges from statistical associations, time-series data,
physical binding and computational predictions (FIC. 2b).

When combining multiple molecular levels in net-
works, it is important to recognize that transcriptom-
ics, epigenomics and proteomics all query unique levels
of cellular or tissue organization. For example, most
proteins found only in mitochondria do not physically
interact with most proteins found only in ribosomes or
proteasomes, and these proteins would normally form
distinct (but possibly connected) modules in PPI net-
works. However, in circumstances such as cellular stress
or neurodegeneration, the genes encoding these orga-
nelle-specific proteins might be transcriptionally co-reg-
ulated and hence highly connected at a co-expression
level. In this case, transcriptomics can provide a novel
view of cellular mechanisms. In general, tissue-, time-
or disease-specific data sets aid in conferring specific-
ity to otherwise non-neuronal data. Until such data
are available, we suggest beginning with genome-wide
tissue-specific data such as transcriptomics, followed
by combining literature-curated or non-tissue-specific
evidence with gene co-expression modules.

Neurodevelopmental disorders
Neurodevelopmental disorders are characterized by
abnormal behavioural or cognitive phenotypes origi-
nating either in utero or during early postnatal life, and
can be accompanied by clinical features outside the CNS.
Various genetic approaches have been successful in iden-
tifying the causes of more than 1,000 Mendelian, and
fewer non-Mendelian, forms of neurodevelopmental
disorders: prototypical examples are intellectual disabil-
ity®*®, autism spectrum disorder (ASD)*-”’, epilepsy”®”
and schizophrenia®-#2,

As more genetic risk variants for these disorders
have been discovered, studies have found remarkable
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< Figure 2 | Flowchart of transcriptomic analysis and illustration of seeded and

genome-wide approaches to network analysis. A flowchart demonstrating the
general approach to a transcriptomic study that uses differential gene expression (DGE)
and network analysis (part a). Network-level features, such as connectivity ranking and
module-level enrichment, allow the integration of many external data sources and
experiments. Network analysis involves first (part b) connecting genetic or molecular
nodes with information about pairwise relationships, which may be one or more of the
following: statistical associations relating molecular patterns measured across
experiments, such as variation in gene expression levels across brain regions; physical
interaction data from experiments or curated from the literature such as transcription
factor (TF) or RNA-binding protein (RNABP) binding or protein—protein interactions
(PPIs); or computational predictions about TF or RNABP binding using motif enrichment
analysis (here, U on the RNA motif is depicted as T). Next, the structure of the network is
used to (part c) define modules using a seed-based or genome-wide approach, which
groups together the genes that share similar edge-level properties. The seeded
(prior-based) approach is shown on the left-hand side, and the unseeded (genome-wide)
approach on the right-hand side. The seeded approach involves starting with genes of
interest, expanding edges to bring in additional (unannotated) genes and identifying
highly connected components as modules. The unseeded approach (right-hand side)
involves starting with unannotated genes, using edges to identify interconnected
components as modules and then evaluating where genes of interest fall in the resultant
network structure. Modules from either approach can be further annotated with external
information such as genetic associations and known pathways, integrated with
additional data or used to prioritize targets for experimental validation (see BOX 2 and
TABLE 1 for more details). Alternative depictions of the network analysis process are also
available elsewhere?®*1% GO, Gene Ontology; KEGG, Kyoto Encyclopaedia of Genes
and Genome Elements.

pleiotropy™"$3%. Several rare, highly penetrant muta-
tions in evolutionarily constrained fetal brain-expressed
genes are associated with ASD, schizophrenia and intel-
lectual disability, as well as epilepsy®**-%. We frame
this issue using the concept of developmental canali-
zation®, whereby natural selection on developmental
programmes in humans has led to robustness in a range
of genetic or environmental perturbations®>*: typical
development occurs along a ‘track’ (FIC. 1¢). Under this
framework, the observed pleiotropy is consistent with
the notion that disrupting highly evolutionarily con-
strained genes leads to the ‘derailment’ of typical devel-
opment off this track, rather than setting the brain on
a path to a specific clinically defined disorder (FIC. 1¢).
Thus, many severe mutations do not converge on one
specific phenotype but instead seem to cause a range of
clinical disorders™7¢8081848791 "This formulation leads
to several important questions that can be informed by
integrative genomic studies, including whether diverse
genetic lesions affect similar pathways and where disease
specificity emerges. We provide examples below of gene
network studies that use co-expression, PPIs and inte-
grated networks to understand ASD and schizophrenia.

Binary networks

Networks in which the edges
are all or nothing, either
because this is inherent to

the edge measurement (for
example, physically interacting
or not) or because a cut-off or
threshold has been applied to
a continuous measurement (for
example, by applying a rule
that all correlation values >0.7
are 1, all others are 0).

Signed networks

Networks in which the direction
of association is taken into
consideration in addition to the
magnitude of the correlation;
for example, in a signed
correlation network, high
positive correlations are
assigned high edge values, but
high negative correlations are
assigned low edge values.

Unsigned networks
Networks in which any high
magnitude association is
assigned a high edge value
regardless of the direction of
the association.

Dysregulated networks in the brains of individuals with
ASD or schizophrenia. ASD is a phenotypically and aeti-
ologically heterogeneous neurodevelopmental disorder
that is defined by deficits in social communication and
mental flexibility, with an onset in the first few years of
life”. More transcriptional studies of ASD post-mortem
brains have been limited by the paucity of available
tissue, which has made them underpowered to iden-
tify reproducible pathways with statistical rigour®>-*.
Nevertheless, some themes have emerged across studies,

Topological overlap

A computation on direct edge
relationships in a network that
transforms them into indirect
edge values that reflect the
sharing of neighbourhoods
between genes.
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including the increased expression of immune-microglial
genes and the decreased expression of synaptic genes
in the cerebral cortex. The first ASD study to identify
reproducible, genome-wide findings used WGCNA*
to identify two modules, one containing upregulated
genes and another containing downregulated genes that
defined coherent biological processes in ASD brains®.
This study used co-expression module eigengenes (the
first principal component of the gene expression levels
of each module) to identify modules associated with
ASD and to ensure that they were unrelated to potential
confounders such as RNA integrity, age or seizure his-
tory. This module-level association approach reduces
the problem of multiple comparisons and highlights the
advantages of using networks as an organizing frame-
work®. The integration of genetic data with co-expres-
sion modules showed that the downregulated neuronal
signalling module has a potential causal role in ASD,
and that the upregulated ASD module was probably
a response, which is consistent with its enrichment in
microglia and astrocyte genes®. These results supported
the findings of several previous smaller studies’>®.
Synaptic and microglial modules have been replicated
in ASD cortex using RNA-seq in larger independent
cohorts”.

Schizophrenia is defined by prolonged or recur-
rent episodes of psychosis (characterized by hallucina-
tions and delusions) as well as negative symptoms and
deficits in cognitive function®. Although diagnosis is
usually made in late adolescence or early adulthood,
extensive evidence indicates a neurodevelopmental
origin®. Transcriptional studies of schizophrenia have
benefited from considerably larger sample sizes than
those of ASD. However, patients with schizophrenia
have greater comorbidity of confounders such as smok-
ing, alcohol and substance abuse than those with ASD.
Overcoming potential confounders requires careful
matching of patient and control individuals and must
take into account potential covariate effects when pos-
sible, as has been done in many studies'®'®!. Despite
variable results, consistent findings across studies can
be identified, including dysregulation of GABAergic
signalling'®*; downregulation of oligodendrocyte- and
myelination-related genes'”, mitochondrial function
or energy metabolism'®, and synaptic genes'®*; and
upregulation of immune and inflammatory genes'®.

One of the first studies to put schizophrenia transcrip-
tomics into a genome-wide co-expression network used
mutual information and WGCNA'?. This study showed
that, as in ASD, the overall transcriptomic structure that
is observed in control brains is intact but that a neural dif-
ferentiation module that is associated with schizophrenia
does not follow the normal trajectory of downregulation
with age. Another study confirmed that a dysregu-
lated neuronal differentiation module was consistently
observed in schizophrenia post-mortem brains and sug-
gested that the same pathways were involved in bipolar
disorder!®. Moreover, genome-wide association study
(GWAS) signal enrichment analysis* found that com-
mon variants associated with schizophrenia and bipolar
disorder were enriched in the neuronal differentiation
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Box 3 | Recommendations and general guidelines for transcriptomic studies

Experimental design

* Randomize or balance sample preparation and data collection over all known factors
to reduce confounding variation from batch effects, which can introduce spurious
correlations. For RNA-seq, we recommend barcoding and multiplexing samples (over
eight per lane) to reduce batch effects?’°.

e Evaluate the contribution of both biological and technical factors via unsupervised
methods such as principal component analysis'’® and apply appropriate methods to
remove unwanted variation from the data’®*"".

* RNA-seq studies with degraded RNA (RNA integrity number <9; essentially all
post-mortem studies) should use ribosomal RNA depletion library preparation?.
Sequencing samples with a read length of 50 bp with 10 million unique reads
(20 million paired-end reads) will detect most highly expressed genes. Deeper
sequencing and longer read lengths may be required to accurately and systematically
detect noncoding RNAs, splicing or novel features, and pilot experiments are
recommended for these scenarios.

DGE analysis
¢ In most experiments, biological variability is greater than technical variability, so
biological replicates are of greater value than technical replicates!’75219,

* For well-controlled experiments with expected changes of >twofold in many genes,
three or more independent samples per condition are recommended!’>?'°. For
post-mortem samples, in which the detection of lower-fold changes may be important
and variation may be greater owing to clinical heterogeneity and technical factors, at
least 15 case and 15 control samples are recommended in an initial cohort.

* Appropriately transformed and normalized sequencing data can be treated similarly
to microarray data as far as statistical modelling and multiple corrections are
concerned'’>??°, For differential gene expression (DGE), RNA-seq studies should
observe existing analytical and statistical guidelines for microarrays?! and, if possible,
should carry out pilot experiments to estimate power??.

Co-expression network analysis

* The power of network analysis is dependent on similar factors to DGE but is also
dependent on the network features of interest. At currently available sample sizes,
networks are most reproducible at a module level****%, then at the hub gene level***
and, last, at the level of precise gene connectivity rankings or precise module
memberships of genes*°.

* To obtain module-level reproducibility, 20 independent samples are usually
sufficient®, but systematic and accurate reconstruction of specific edges, particularly
for systematic regulatory relationship discovery, may require hundreds of samples*.
For studies comparing conditions, we recommend a minimum of 20 samples per
condition. More samples may be necessary if many additional factors vary; for
example, age, sex and different brain regions.

¢ Given the large number of parameters in network analysis, there is no ‘one-size fits all’
solution. The most rigorous approach is to apply the empirical reproducibility criteria
discussed below.

Reproducibility and biological value
* Apply permutation analyses to ensure that gene network modules are significantly
co-expressed (interconnected).

¢ To reduce over-fitting and to improve reproducibility, select the outcome of interest
(fold change for each gene and gene membership in a module) and apply
cross-validation or the bootstrap method?**.

* Demonstrating reproducibility of major findings (for example, module definitions, top
DGE genes and changes in gene network position between conditions) is the most
convincing form of validation of a particular analysis. Replication involves identifying
the outcome of interest, applying the same analysis as in the original study but to
independent data, and demonstrating statistical replication of the same finding.

* Generate hypotheses from the DGE and/or network analyses and test them
bioinformatically or with wet-laboratory experiments to demonstrate predictive
biological value.

* To allow other researchers to examine the data sets, raw data should be deposited in a
public database (such as GEO, SRA or dbGaP).

* To allow for a comparison of analysis methods, always publish clear and usable code
along with the publication reporting this analysis.

module, suggesting that disorders sharing a genetic
architecture® may also share functional transcriptional
alterations: a hypothesis that warrants rigorous testing.

Mapping risk genes onto developmental networks. A
shortcoming of studies using post-mortem brain tissue is
that the tissue is usually obtained long after the disease-
causing changes have occurred. Given that the human
brain transcriptome has a reproducible structure'>?,
one useful way to explore how mutations in risk genes
perturb typical brain development is to map risk genes
onto transcriptional networks that represent normal
brain structure or development (FIG. 1¢). The first study
to do this identified co-expression modules that had cell
type-specific and region-specific expression patterns
using nearly 1,000 adult brain regions'>'”, and identi-
fied neuronal gene-enriched modules containing ASD
candidate genes and ASD GWAS signals. Moreover, this
study found that genes in these modules have dynamic
developmental trajectories, demonstrating a role for
ASD risk genes in neural development.

The identification of genetic risk factors by whole-
exome sequencing’®”® and the availability of tran-
scriptome data spanning multiple brain regions and
developmental stages'>'” created new opportunities to
map disease risk genes onto developmental transcriptional
networks. One network study defined robust co-expres-
sion modules that were reproducible in independent data
and identified five developmentally regulated co-expres-
sion modules that were enriched for PPIs and ASD risk
genes”. By comparing these genes with genes that cause
intellectual disability, this study identified molecular
processes that are preferentially disrupted by ASD risk
genes, including transcriptional regulation, chroma-
tin regulation and synaptic development, and it identi-
fied disruption of specific pathways, such as BAF (SWI/
SNF) complex-mediated neuronal development %11,
A complementary study identified developmental
co-expression networks enriched for ASD risk genes
seeded around nine genes with the highest ASD asso-
ciation signal from whole-exome sequencing''?. These
investigators asked if, when and where ASD genetic
risk converges during brain development by evalu-
ating seeded co-expression networks. They started
with the nine ‘high-confidence’ risk genes and expanded
the network using combinations of spatial and tempo-
ral expression data from post-mortem brain tissue.
They identified three spatiotemporal combinations that
passed stringent correction for multiple testing: frontal
cortical regions during the fetal period, and thalamic
and cerebellar regions from birth to 6 years of postnatal
age. Interestingly, there was no pathway or PPI enrich-
ment in these modules, probably owing to the inclusion
of both positive and negative correlations when com-
puting co-expression relationships (unsigned networks),
which is a method that is less sensitive to pathway and
protein interaction detection®®*.

Importantly, both of these studies found conver-
gence for rare de novo ASD-associated mutations dur-
ing early fetal and mid-fetal development, with the
greatest enrichment for risk in genes found in cortical
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Table 1 | Different edge types in gene networks: practical and theoretical considerations

Edge relationships

Main advantages

Completeness of
data across the
genome

Tissue specificity

Module-level
interpretation

Interpretation of
hubs

Sources of bias

Examples of
bioinformatic
validation

Examples of
experimental
validation

Gene co-expression

Statistical association (correlation or mutual
information)

Indirectly predicts co-regulation, physical
interactions and cell type specificity; easiest
to measure from tissue of interest

Most genes are similarly covered
genome-wide

Primary data are often tissue specific

Reflects cell types and transcriptionally
co-regulated biological processes

Cell type-specific markers; molecular
regulators such as transcription factors or
RNA-binding proteins

Technical artefacts (RNA quality and batch
effects); biological confounders (age and sex);
post-mortem artefacts (cause of death)

Preservation of co-expression in independent
data; enrichment of physical interactions in
modules

Showing cell type specificity of hubs by in situ
hybridization; demonstrating regulatory
potential of hubs by hub gene knockdown

Protein—protein interaction

Physical binding (interacting or not
interacting)

Based on direct physicalinteractions;
predicts protein complexes and
signalling pathways

Incomplete assessment for most
interactions; biased towards most
well-studied molecules

Primary data are rarely tissue specific

Protein complexes; signalling cascades;
subcellular structures

Key proteins in complexes; converging
points of signalling cascades

Literature-curated data contain biases
towards more well-studied interactions,
which tend to be non-neuronal

Enrichment of co-expression from
independent data

Co-immunoprecipitation of proteins
of interest; disruption of protein
complexes when hubs are targeted

Motif enrichment for
transcription factors

Computational inference (motif
binding scores)

Identifies putative co-regulatory
relationships without needing to
carry out new experiments

Predictions restricted to
availability and accuracy of
available motif information

Primary data not usually tissue
specific

Groups of transcriptionally
co-regulated genes

Gene to which many transcription
factors bind, perhaps under more
complex regulation

Unlikely to reflect tissue-specific
interactions or regulation without
additional data

Enrichment of predicted binding
sites from independent ChIP-seq
data

Showing changes in transcription
of targets on perturbation of
regulators

Seeded (prior-based)
networks

Network analysis approaches
in which edges are ‘grown’
around ‘seed’ genes that are
selected on the basis of
previous experiments or prior
hypotheses, and the network
structure is dependent on
these seed genes.

Unseeded (genome-wide)
networks

Network analysis approaches
in which edges are evaluated in
a genome-wide manner, and
network structure is not
dependent on prior knowledge
of a particular set of genes.

Adjacency matrix

A matrix of pairwise node—
node relationships that
quantifies all possible edges in
a network. Edge relationships
may be determined from one
data type or by weighting the
contribution from multiple
types of data.

glutamatergic neurons. Thus, despite the fact that the
same gene is rarely hit recurrently by rare de novo vari-
ants in ASD, this class of variation preferentially dis-
rupts projection neurons. Notably, the genome-wide
approach?” assessed both ASD and intellectual disability
genes, and further suggested that the disruption of the
upper neocortical layers (layers 2-4) is related to ASD-
like phenotypes and not intellectual disability. Other
studies have also found that fetal cortical development
and glutamatergic neurons are affected by mutations in
ASD, suggesting that it is a robust finding'"'"*".

A seeded co-expression approach has also been used
to identify risk convergence in schizophrenia, identify-
ing fetal development of the prefrontal cortex as a point
of convergence for de novo mutations'. This study did
not extend the network to genes beyond the seed set, and
it did not investigate cellular, laminar or regulatory rela-
tionships among these genes. As larger sets of risk genes
are becoming available”>””%81, a more refined view will
emerge of how mutations in ASD, schizophrenia, intel-
lectual disability and other psychiatric disorders overlap
and diverge to affect cells and circuits.

Regulatory hubs in neurodevelopment and disease.
Another promising approach to identify disease-associated
networks is to experimentally construct a seed-based net-
work for a candidate regulatory molecule. Using CLIP-
seq, investigators identified the RNA binding targets of
the translational regulator fragile X mental retardation
protein (FMRP)"¢, and a subsequent analysis found that
these targets are highly enriched for de novo mutations in
ASD”. Both genome-wide” and seeded''* co-expression

network analysis further connected FMRP targets with
multiple forms of ASD genetic risk, including copy num-
ber variations (CNVs)'*. Additionally, whole-exome
sequencing studies of other neurodevelopmental dis-
orders have found enrichment for FMRP targets in rare
mutations in schizophrenia®, intellectual disability®® and
epilepsy’. As many FMRP targets are highly conserved
and are under purifying selection’*!7, FMRP-related
activity-dependent regulation during fetal brain devel-
opment might be particularly vulnerable to genetic per-
turbations, with severe mutations resulting in disruption
of developmental canalization.

At the transcriptional regulation level, ChIP-seq in
induced pluripotent stem cell-derived neurons has been
used to define the network of genes regulated by chro-
modomain helicase DNA-binding protein 8 (CHDS8)"*,
which is the gene most frequently affected by ASD-
associated rare de novo variation”""*"'?!, Integration of
ChIP-seq, CHD8 knockdown and gene co-expression
suggested that CHD8 directly regulates co-expression
modules that are enriched for rare de novo mutations
and genes found in the proliferating layers of the fetal
cortex”. Another study applied a similar approach but
evaluated CHDS targets in the fetal brain in vivo™. This
study identified stronger enrichment for ASD muta-
tions, suggesting that ChIP-seq in the human brain
at the right time point identifies interactions that are
more disease relevant™. Given the emerging role of fetal
brain-expressed transcriptional and chromatin regula-
tors in ASD*77!%2, integrating ChIP-seq of other tran-
scriptional regulators with developmental co-expression
networks may help to elucidate a shared, evolutionarily
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CLIP-seq

An assay for measuring the
binding sites of a protein on
RNA transcriptsin a
genome-wide manner that
involves crosslinking immuno-
precipitation followed by
high-throughput sequencing.

ChIP-seq

An assay for measuring the
binding sites of a protein on
DNA across the genome that
involves chromatin immuno-
precipitation followed by
high-throughput sequencing.

DNase hypersensitivity or
ATAC-seq

Sequencing methods that infer
regions of the genome in a
particular cell or tissue with
open chromatin by exploiting
the fact that these regions are
preferentially accessible to the
DNase | enzyme or a
transposase.

Eigengenes

Module-level summaries of
expression utilized in
co-expression networks
calculated by taking the first
principal component of the
expression levels of genesin a
module.

Psychosis

A mental state defined by a
loss of contact with reality and
characterized by exaggerations
or distortions of normal
perception.

Negative symptoms
Symptoms involving a loss of
normal emotional responses,
including a lack of motivation,
an inability to experience
pleasure and reduced
expression through speech.

Unsupervised methods
Analysis approaches that use
the intrinsic variation in data to
define shared patterns without
explicit prior knowledge of how
the data should be grouped
(for example, hierarchical
clustering). This can identify
novel clusters or groupings of
data points.

constrained regulatory network that is susceptible to
disruption in brain development.

PPI networks define new interactions. Genetic inves-
tigations in ASD have constructed seed-based net-
works with literature-curated PPIs to identify the
convergence of ASD risk genes””*. This approach was
applied to identify a highly interconnected PPI sub-
network among rare de novo variants in ASD”'. Genes
in this subnetwork were evaluated in a larger cohort in
a targeted sequencing study'®, which identified more
risk variants compared with chance and demonstrated
that PPI connectivity can be a predictor of ASD risk
mutations. However, the biases inherent to literature-
curated data and the lack of tissue specificity in these
PPI networks limit the identification of novel pathways
or circuits with this approach (TABLE 1).

Recently, one study used global literature-curated
PPI interactions in a genome-wide network analysis to
identify modules that are enriched for ASD-associated
genes'?. This identified a PPI module that is enriched for
genes related to synaptic function and weakly enriched
for mutations from individuals with ASD. Integration
with transcriptomics annotated the module as highly
expressed in oligodendrocytes and the corpus callosum,
demonstrating that tissue-specific data are essential for a
neurobiological interpretation of PPI modules'?. Given
the biases inherent to global PPIs discussed above and
in TABLE 1, these findings warrant replication with new
PPI data. Understanding why these relationships are
detected at the PPI level but not at the co-expression
level will be valuable.

To evaluate whether ASD risk genes interact at the
protein level in an unbiased manner, Sakai and col-
leagues'** carried out a Y2H screen of 35 syndromic or
candidate ASD genes and identified many novel PPIs.
This study was the first of its kind in neurodevelopmen-
tal disorders and showed that the PPI network seeded
around these 35 genes was indeed highly intercon-
nected. Another Y2H study assessed a larger seed set
of ASD candidate genes that corresponded to spliced
isoforms identified by whole-brain RNA-seq'?, hypoth-
esizing that isoform-level PPIs would allow for the dis-
covery of tissue-specific PPI networks'?. The genes in
the most interconnected component of the PPI network
formed a module that was modestly enriched for gene
co-expression, gene co-regulation and known ASD genes.
These results further demonstrated convergence among
known disease-relevant genes at the PPI level and also
demonstrated that evaluating tissue-specific isoforms can
be used to identify novel interactions. Both of these PPI
studies used state-of-the-art quality control and valida-
tion, and identified many novel interactions. However,
even with knowledge of isoform-specific interactions, the
tissue environment for interaction cannot be efficiently
recapitulated with current PPI approaches at a genome-
wide scale (TABLE 1). This, and other recent work studying
cardiac tissue™, highlights how tissue-specific molecular
data improve PPI analyses to identify or prioritize genetic
variants that specifically function in that tissue, in this
case causing cardiac arrhythmia.

Integrating multiple molecular levels. The idea that
multiple lines of evidence may increase the power to
detect disease-relevant interactions has motivated
the integration of literature-curated, molecular and
genetic evidence to support specific genes or pathways.
The Network-Based Analysis of Genes (NETBAG)'*’
approach combines multiple forms of literature-curated
data using an integrated network approach that has been
demonstrated to be effective for predicting gene essen-
tiality in yeast'?. The goal of NETBAG is to construct a
network in which highly interconnected genes are likely
to participate in a similar phenotype. Edges in NETBAG
are predominantly derived from multiple PPI databases,
GO* and KEGG®!, which are all literature-curated data-
bases, and thus NETBAG is susceptible to the biases dis-
cussed above. The first study with NETBAG evaluated
CNV-hit genes implicated in ASD and found a highly
interconnected module related to synaptic function'®.
Furthermore, genes in CNVs from females contrib-
uted more to the module connectivity than those from
males, suggesting that females are affected by more
severe genetic hits in ASD, an observation that has been
replicated in exome-sequencing studies”'"”. Another
approach™ has evaluated CNV duplications in addi-
tion to CNV deletions and also found an interconnected
PPI network that was enriched for proteins involved
in synaptic transmission, validating the observation
that pathogenic CNVs affect similar gene networks'?’.
An extension of the NETBAG approach (dubbed
NETBAG+) has also been applied to simultaneously
evaluate large sets of single-nucleotide variants (SNVs)
and CNVs in schizophrenia'®*! and ASD"?, confirming
the convergence of disease genes onto shared pathways.
An exciting approach is to simultaneously integrate
PPIs, co-expression and mutational burden in neurode-
velopmental disorders, as has been done by Merging
Affected Genes into Integrated networks (MAGI'*).
This approach begins with mutation-affected genes in
their known pathways and then adds genes to these ‘seed
pathways’ on the basis of high co-expression or PPI con-
nectivity. The extent to which genes are added to make
a module is determined by an objective function that
maximizes pathogenic mutations from cases compared
with controls in the module. MAGI identified modules
containing functionally related genes enriched for del-
eterious mutations in ASD, many of which are under
strong purifying selection, and are also found in epilepsy,
schizophrenia and intellectual disability'*.

Neurodegenerative disease

Neurodegenerative diseases are characterized by a pro-
gressive loss of neural tissue that results in a decline
in cognitive and behavioural function. Many of these
diseases have known causes that involve mutations
in ubiquitously expressed proteins'*, but they follow
stereotyped patterns of degeneration that selectively
affect certain cell subsets more severely, resulting
in disease-specific spatial and temporal patterns of
degeneration'**"¥ (BOX 1). Neuropathological investiga-
tions have identified protein-centric mechanisms that
might be involved in disease pathogenesis, but causal

450 | AUGUST 2015 | VOLUME 16

www.nature.com/reviews/genetics

© 2015 Macmillan Publishers Limited. All rights reserved



Expression quantitative
trait locus analysis

(eQTL analysis). A specific case
of genotype-to-phenotype
association that uses RNA
transcript levels as the
phenotype in order to identify
genetic loci that regulate RNA
levels.

Selective vulnerability

The relative susceptibility of
specific brain regions, cell
populations or time points to
genetic or environmental
insults that result in disease.

mechanisms are difficult to pinpoint, as post-mortem
samples reflect the consequence of years of ageing and
disease progression. Important disease-associated
molecular changes can be confounded by environmen-
tal and clinical factors. Additionally, although positional
cloning has identified genes and pathways that are
involved in many neurodegenerative diseases, patholog-
ical mechanisms, modulators of pathogenesis and dis-
ease biomarkers have remained elusive, suggesting that
genome-wide approaches are needed. Transcriptional
and PPI network studies have recently identified many
new insights into these diseases. Below, we focus on
representative transcriptomic studies of two genetically
complex diseases (Alzheimer disease and frontotempo-
ral dementia (FTD)) and PPI studies of two diseases for
which causal genes are well defined (Huntington disease
and inherited ataxia), but for which disease mechanisms
are still poorly understood.

Post-mortem transcriptomic analysis in dementia.
The major challenge in Alzheimer disease and FTD
transcriptomics has been the identification of changes
that are independent of alterations in cell type propor-
tions, which accompany cell death and inflammation.
Three major study design principles have been used
to overcome this issue: transcriptomes in differentially
vulnerable brain regions or cellular populations can
be compared to identify vulnerable or protected path-
ways'**1% (BOX 1); preclinical changes in at-risk individu-
als with a milder disease presentation can identify genes
and pathways that might lead to disease'*’; and cell type-
specific markers can be used in combination with bioin-
formatic analyses to account for the effect of changes in
cell proportion on the overall transcriptome'*2.

Multiple transcriptomic studies of Alzheimer disease
have been carried out in the human brain at varying spa-
tial resolutions'®. Large studies using quantitative met-
rics of severity'* and differentially vulnerable regions'+
have identified pathway-level changes in transcriptional
regulation, apoptosis, cell proliferation, energy metabo-
lism and synaptic transmission. One particularly power-
ful approach involved the use of the pattern of regional
vulnerability to guide a microarray study that identified
a defect in the retromer complex, which is responsible for
endosome-mediated recycling of membrane proteins'*.
The involvement of this pathway in Alzheimer disease
was experimentally validated'*. The first large transcrip-
tomic study (involving 188 controls and 176 individuals
with Alzheimer disease)'"” connected genetic variation
to expression changes by using expression quantitative trait
locus analysis (eQTL analysis) in controls and Alzheimer
disease, and further supported the pathway-level findings
related to transcriptional regulation and energy metabo-
lism in Alzheimer disease'*'**. Integration of eQTLs can
identify causality in transcriptomic studies in the context
of Alzheimer disease risk, adding a crucial mechanistic
element to studies of post-mortem gene expression.

In FTD, transcriptional signatures related to dif-
ferential regional vulnerability have helped to identify
modulators of neurodegeneration. The first of two
well-powered studies that applied this approach carried
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out transcriptomic analysis in a mouse model of FID,
identifying the gene Npepps'*®. Cross-species analyses
in flies and humans confirmed the expression pattern
and neuroprotective effect of NPEPPS'. The second
study'® compared post-mortem tissue from patients
with FTD harbouring dominant mutations in the pro-
granulin (GRN) gene, patients who had FTD but who
did not have a known family history or mutations, and
control individuals. This study also leveraged regional
vulnerability by comparing transcriptome profiles in the
frontal cortex, hippocampus and cerebellum, identify-
ing a diminishing hierarchy of susceptibility to FTD.
The findings demonstrated that GRN-positive individu-
als were a transcriptomically distinct group from those
with sporadic FTD'®. Both of these studies in FTD
demonstrate the value of using selective vulnerability and
differential genetic risk in study design.

From individual genes to networks and mechanism.
Most early post-mortem studies from individuals with
Alzheimer disease or FTD generated long gene lists
and were followed by analysis of GO or KEGG pathway
enrichment*** In an early network study, Miller
and colleagues'’ applied network analysis to compare
the transcriptome in normal ageing and Alzheimer dis-
ease, finding many shared features that were downregu-
lated in Alzheimer disease and normal human ageing'®.
They subsequently'* incorporated more than 1,000
microarrays from mouse models of Alzheimer disease
and human patients with Alzheimer disease from public
databases to reproduce and extend these results, identi-
fying additional co-expression modules that are related
to mitochondrial dysfunction and synaptic plasticity.
This work also found major differences in dementia
susceptibility genes between humans and mice, poten-
tially identifying why some mouse models might not
recapitulate human neuropathology. Another study used
similar methods to identify overlap in transcriptional
networks between vascular disease (a major risk factor
for dementia) and Alzheimer disease, identifying poten-
tial molecular mechanisms that might underlie their co-
occurrence'. Forabosco and colleagues'® used network
analysis to explore the function of TREM?2 (triggering
receptor expressed on myeloid cells 2), an Alzheimer
disease risk gene, suggesting a role for microglial func-
tion and further implicating neuroinflammation in
Alzheimer disease. In FTD, two studies re-analysed pub-
lished transcriptome data'® to discover a role for WNT
signalling in GRN-mediated FTD'**'**, Both involved
extensive bioinformatic analyses of expression data
from in vitro neural progenitor models and identified
transcriptomic changes shared across the post-mortem
human brain, human neural cell lines and the mouse
brain. Experimental validation of predictions from these
networks showed that this cross-species approach can
identify consistent, high-confidence perturbations in
neurodegenerative disease*®'**. Additionally, the use
of previously published human data in many of these
studies highlights the value of policies supporting data
sharing, especially from patient cohorts. Finally, stud-
ies of the regulatory networks and targets of specific
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Causal anchor

A causal factor, such as genetic
variation, that can be used to
orient edges to transform an
undirected correlational
network to a directed causal
network.

miRNAs such as miR-339-5p in dementia are in their
early stages'>>'¥” but promise to reveal novel regulators
of neurodegeneration.

Although transcriptomic studies have furthered our
understanding of disease mechanisms beyond neuro-
pathology and single genes, the effects of cell type loss
have not been completely accounted for in most studies.
Purifying cell populations or carrying out transcriptional
analyses on single cells'*** can identify important
changes that are not apparent in whole-tissue transcrip-
tomes'*"'*2, Combining bioinformatics approaches with
single-cell sequencing will increase the resolution at
which regional vulnerability can be assessed and will
enhance the ability of gene co-expression networks to
identify key changes associated with dementia.

Protein interaction networks with known disease genes.
The causal mutations for Huntington disease and many
inherited ataxias have been known for more than a dec-
ade, and thus the focus of molecular investigations has
been on understanding disease mechanisms and modi-
fiers. Lim and colleagues'® used a seed-based approach
based on a Y2H screen to identify interactors of the
protein products of multiple causal and candidate genes
in inherited ataxias. Analysis of the resultant PPI net-
work identified an interconnected network of proteins
related to inherited ataxias. Importantly, interactors in
the network were potential modifiers of disease progres-
sion, and, in subsequent work, gain of function medi-
ated by a newly identified protein complex was found
to mediate disease pathogenesis'®. This Y2H approach
has also been used to identify potential modulators of
Huntington disease'*’, in which it is thought that inter-
actors of huntingtin (the causally mutated pathological
protein) might modulate disease severity. Interestingly,
in vivo PPI screening by large-scale co-immunopre-
cipitation and mass spectrometry provided tissue- and
time-specific information that was not found by Y2H
studies'®”. WGCNA identified spatially and temporally
specific modules associated with mutant Htt (which
encodes huntingtin); and proteins with high intra-
modular connectivity (hub proteins) modulated neuro-
degeneration in flies. This work further emphasizes the
importance of considering tissue context in the studies
examining disease-relevant protein associations.

Integrating genetic variation and transcriptome net-
works. The most ambitious and exciting goal in systems
biology is to elucidate the functional genetic architecture
of diseases by systematically identifying causal effects
using genome-wide variation to disambiguate primary
and secondary changes that occur in disease'**'®. A
recent study shows that this goal is possible in the CNS
by using genetic variation as a causal anchor to define
genetically driven network-level changes in Alzheimer
disease and to provide experimental validation for net-
work predictions'”’. Zhang and colleagues'”® applied
WGCNA to hundreds of post-mortem brain samples
from individuals with Alzheimer disease, other neuro-
degenerative diseases and controls. They showed that
multiple transcriptional modules were remodelled in

Alzheimer disease: gain of connectivity was observed
in immune and neurogenesis pathways, and loss of
connectivity was predominant in pathways related to
GABA signalling and myelination. An eQTL analysis
followed by module-level genetic signal enrichment
identified several modules in which genetic associa-
tion signals were enriched. Given that gene expression
changes are caused by genetic variation, this suggested
these modules were causally involved'”’. The research-
ers then applied Bayesian network analysis to evaluate
causal relationships in an Alzheimer disease-related
microglial module, implicating TYROBP (TYRO pro-
tein tyrosine kinase-binding protein) as a regulatory
hub. The role of Tyrobp was experimentally validated in
mice'”, showing that network structure is predictive, as
had previously been demonstrated with co-expression
networks®. Overall, integrating genetics with co-expres-
sion networks using large sample sizes (with a minimum
of 100 cases and controls) and establishing causality by
evaluating genotype—phenotype relationships and eQTL
is very promising.

Specificity and convergence across CNS disorders
Many of the most influential studies using gene net-
works to probe neuropsychiatric disease mechanisms
integrate multiple data types (for example, RNA expres-
sion, GWAS signals and PPI) or data sets (for example,
human post-mortem, mouse and in vitro), emphasiz-
ing the value of publicly available data sets. The further
availability of raw molecular profiling data with neces-
sary metadata amplifies the value of individual studies.
In addition to generating new hypotheses, molecular
systems approaches integrating data from diverse stud-
ies can reveal unexpected and distinct relationships
that are common to different CNS disorders. FIGURE 3
describes an example of a network-based meta-analysis
of brain transcriptional profiles from publicly available
data in ASD, schizophrenia and Alzheimer disease,
which identifies shared and distinct biological processes
across disorders. Several modules are shared by two of
the three disorders, including the red module (ASD and
schizophrenia), which contains voltage-gated calcium
channels, and the green module (ASD and Alzheimer
disease), which contains microglial markers (FIG. 3b-d).
This demonstrates how cross-disorder analyses can
systematically reveal shared and distinct biological pro-
cesses among disorders, even when the data are from
different studies (see Supplementary information S1
(box)). It will be fruitful to combine more CNS disorders
and diseases and to integrate GWASs and rare mutations
to identify which variants affect gene expression across
diagnostic boundaries and which are more specific.
Prioritizing the disease-specific genes for further investi-
gation may also aid in clarifying the molecular processes
that lead to behavioural and cognitive alterations that are
specific to a particular disease.

Guidelines for transcriptomic and network studies
Given the promise of molecular systems and integra-
tive network approaches, it is perhaps surprising that
there are few universally agreed on metrics, power
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Gene set enrichment

An analysis approach that
assesses the statistical
significance of the overlap
between two gene sets; one set
is usually an annotated
reference set, and the other is
an unannotated set of interest.

analysis tools or methodological comparisons to guide
experimental design, execution and analysis, such as
there are for genetic association studies'’2. For DGE and
network analysis, there are many studies with guide-
lines that are based on theoretical models and empiri-
cal assessments*>'7*7176, but most studies use data from
experiments that do not have the spatial, temporal or
disease-relevant complexities that occur in studies of the
CNS or post-mortem tissue. There is no experimental
design that suits all aims, but we suggest criteria for ini-
tial experimental design, ensuring reproducibility and
improving biological interpretability for transcriptomic
analyses in BOX 3.

In general, it is helpful to think of all variation in gene
expression or other molecular profiling data as a con-
sequence of technical, biological and unmeasured fac-
tors'”, rather than assuming that differences are due to
experimental interventions or disease status*'. Optimal
methodological choices and study designs ensure that
the biological signals from the main factors are not con-
founded by variation from unwanted factors'”®. Notably,
molecular profiles in post-mortem gene expression stud-
ies are affected by RNA degradation and post-mortem
intervals'”, but other technical factors including library
preparation and sequencing depth in RNA-seq analysis
should also be carefully evaluated'*>'®!.

Additionally, we note two important points about
studies that construct predictive models and studies
that make causal claims. For studies that develop pre-
dictive models, such as disease classifiers, experimental
design should include the estimation of a model on ini-
tial data followed by evaluation of accuracy in held out
or, preferably, independent data'®. As far as causality is
concerned, most molecular profiling studies, especially
those using post-mortem tissue, cannot show causality
without follow-up controlled experiments or genetic evi-
dence'®'"!. We also strongly suggest the experimental
validation of key network predictions, as this provides
avenues for refinement and biological grounding of the
network30,32,153,170'

Gene set enrichment with networks. As shown by mul-
tiple studies, gene network analyses can aid in under-
standing genetic association studies. Grouping genetic
findings using disease- and tissue-relevant modules
can increase the power to detect genetic associations
with disease by combining signals that reflect similar
underlying biology while simultaneously informing bio-
logical mechanism by functionally annotating genetic
findings®*!%>12218_ Enrichment for genetic variants in a
module can be evaluated using gene set enrichment meth-
ods, which rely on comparing enrichment in a module
relative to a control gene set. However, studies have
demonstrated biases in gene length, gene mutability and
other factors that can drive gene set enrichment instead
of a true biological signal. For example, longer genes are
more likely to be implicated by CNVs and SNV s*184185,
and genes highly expressed in the brain, particularly
those involved in synaptic function, are longer on aver-
age than other genes'¢. These biases inflate enrichment
results and can result in false positives, so it is important
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to identify appropriate control sets or to apply the cor-
rect statistical methods (permutation tests or covariate
modelling'®”). We note that each of the points discussed
here and in BOX 3 is applicable to many other types of
high-throughput data and that there are many valid
variations to FIG. 2a.

Future directions

In this Review, we have discussed how transcriptomic
and integrative network approaches have been applied
to provide a systems-level understanding of CNS disor-
ders in an unbiased and reproducible manner. Mapping
genetic variants to gene expression and PPI networks
has been fruitful, but most disease-associated varia-
tion in complex diseases lies in the noncoding regula-
tory regions of the genome'®. The next crucial step for
high-throughput molecular studies in the brain will be
to understand regulatory alterations and interactions
during development with histone mark profiling and
chromosome conformation capture approaches' .
Additionally, understanding transcriptomic and epige-
netic changes in more homogeneous cellular popula-
tions, or at a single-cell resolution, will greatly improve
our mechanistic understanding of normal human brain
development. Initial maps of these neurobiologically
relevant epigenetic landscapes and cell type differences,
mostly at the tissue level, are under construction by the
PsychENCODE consortium.

As noted throughout this Review, studies of prot-
eomic data are highly complementary to co-expression
data and have revealed a crucial level of organization and
regulation at the translational and post-translational lev-
els. A particularly salient example is the synaptic signal-
ling apparatus, more specifically the postsynaptic density
(PSD), which has been extensively characterized at the
protein level in humans and mice, showing key areas
of overlap and divergence'”"'*>. However, developmen-
tal and cell subtype differences in the PSD are not well
understood, so obtaining PSD co-expression and PPI
networks in relevant neural tissue and time points, simi-
lar to what BrainSpan has done for gene expression, will
be invaluable. Currently, high-throughput, high dynamic
range spatial and temporal data from minute sample
quantities with proteomics are not available, so creative
integration of cell type-specific transcriptional data with
more generic PPI data may provide an approximation of
the regional or cellular differences in synaptic structure
in the near future. The development of methods, includ-
ing benchmarking and refining methods for the integra-
tion of different forms of data (for example, PPI and gene
expression data), developing tools for exploring network
structure at a more fine-grained level, and empiri-
cally defining the most sensitive and robust network
approaches, will also be crucial.

One of the greatest challenges is to systematically
infer causality in molecular networks with a systems
genetics approach'®'®_ This will necessitate more com-
prehensive eQTL studies, particularly in early brain
development and disease'”’. Core molecular pathways
that are confirmed to be perturbed in disease can then
be interrogated with drug or environment perturbation
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< Figure 3 | Transcriptomic convergence and divergence across central nervous
system disorders. Transcriptomics can systematically compare genes and pathways
across neurobiological disorders. To provide a simple example, we compare
genome-wide expression patterns in the cerebral cortex across published microarray
studies of autism spectrum disorder (ASD)*, schizophrenia (SCZ)*** and Alzheimer
disease (AD)*® (part a). We applied differential gene expression (DGE) analysis across
these disorders in a pairwise manner and performed a meta-analysis with weighted gene
co-expression network analysis (WGCNA). Please see Supplementary information S1
(box) for details. The bottom-left half of the comparisons shows pairwise comparison of
DGE across conditions. ASD-SCZ and ASD-AD are significantly correlated in DGE
changes, as demonstrated by Spearman correlations (p values) between genome-wide
DGE effect sizes in each disorder. On the upper-right half of the comparisons, Gene
Ontology (GO) term enrichment of pairwise shared upregulated and downregulated
changes demonstrates that upregulated inflammation and downregulated synaptic
function and oxidative phosphorylation are common to all three disorders. Results are
shown as enrichment Z scores for pathway enrichment, Z> 2 suggests enrichment??’.
WGCNA across these three conditions identified five modules (labelled with different
colours) that are perturbed across at least one condition, as demonstrated by differences
in eigengene expression (*p<0.05,**p<0.01,***p < 0.001, two-tailed t-test) (part b). The
top ten interconnected (hub) genes in each module with edges reflecting the strength of
correlation between genes reveals (part ¢) and GO term enrichment for each module
(partd). MHC, major histocompatibility complex.

data'*' to identify interventions that will perturb net-
works from a disease state into a healthy state. This area
of in silico drug screening based on DGE or network
modules has barely been explored in the CNS, but it has
considerable promise'®. Additionally, with the advent of
mandatory electronic medical records, population-level
studies, including longitudinal data for many simple
phenotypes, coupled with biobanking, can provide the
scale needed to more fully understand genetic contribu-
tions to disease risk as well as disease relationships across
the lifespan'>-1%".

Even once we have the information from thousands
of genomes, biological insights into the CNS require
the assessment of relevant behavioural and cogni-
tive phenotypes, which are not well defined for most

REVIEWS

neuropsychiatric diseases'*®'” and are rarely collected
in large populations. Genome-wide transcriptomic
approaches provide a quantitative endophenotype, or
a biomarker, that genetic association studies can use
to further refine the measurement of disease states.
Transcriptomic and other molecular systems meas-
urements can also be correlated with systems neuro-
science phenotypes, such as MRI and functional MRI
measurements, or behavioural phenotypes to identify
non-invasive indicators of disease state* (FIC. 1a).

Conclusions

Currently, much basic and translational neurosci-
ence research is still focused on candidate genes and
candidate hypotheses, so sceptics may question the
value of measuring entire systems. However, biologi-
cal complexity cannot be ignored; genome-wide meas-
urements, in conjunction with studying individual
genes and pathways, are essential to address the true
underlying mechanisms of neurodevelopmental and
neurodegenerative disorders. Well-designed, repro-
ducible molecular profiling studies allow biologists
to simultaneously evaluate hypotheses in an unbiased
manner and to generate new hypotheses. Although
certainly vast and seemingly complex, gene networks
provide an organizational framework that simplifies
the process of hypothesis generation and testing. The
general paradigm of using correlational and physical
interaction molecular networks in neurobiology to
understand molecular systems changes can be applied
across methodologies and enables the investigation
of relationships that span multiple levels of analysis.
The results of high-quality genome-wide studies will
be essential to develop and test hypotheses that look
beyond where our current knowledge ends to develop
a more encompassing view of the problems posed by
neurodevelopmental and neurodegenerative disorders,
and their potential solutions.
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