
Large-scale genetic association studies have begun to 
unravel the genetic architecture of neurodevelopmental 
and neurodegenerative disorders and have found that 
hundreds to thousands of genetic loci are involved in 
disease risk1. To understand how genetic variants con-
tribute to disease, neuroscientists are faced with the 
task of measuring and understanding phenotypes in the 
central nervous system (CNS), a hierarchically organ-
ized complex system (FIG. 1a). This leads to a reliance on 
models that only account for a few features of the CNS 
at a time, as is done in most laboratory experiments. 
Although this has been fruitful for some highly pen-
etrant variants that yield clear phenotypes, it has been 
less successful for genetically complex diseases.

To understand how genes contribute to CNS phe-
notypes, it is necessary to adopt rigorous data-driven 
frameworks that operate at a systems or a network 
level2–4. Methods have recently become available that 
permit the measurement of large-scale molecular4,5, 
cellular6 and circuit-level3 phenotypes, and additional 
methods are currently in development7. One goal of 
these approaches is to connect genetic risk and mecha-
nism by combining a molecular systems or integrative  
network approach with systems neuroscience to understand 
the molecular regulatory networks and pathways that 
underlie circuit function, behaviour and cognition in 
health and disease. Collaborative and consortium-level 
efforts have made substantial progress by mapping tran-
scriptomic, epigenomic and proteomic landscapes in the 

brain8–10. Recent important advances include the evalua-
tion of spatial and temporal transcriptomes by the Allen 
Brain Institute and BrainSpan8,11–13, the quantification 
of the epigenetic landscape in CNS tissue and cell types  
by the Roadmap Epigenomics Mapping Consortium14, 
and the integration of genetic variation with gene expres-
sion in the brain by the Genotype-Tissue Expression 
(GTEx) project15, as well as others16,17. These efforts 
have provided the first systematic view of the immensely 
complex molecular landscape across brain development, 
between brain regions and among major cell types 
(FIG. 1b). However, the molecular signatures of specific 
cell types, finer-grained temporal dynamics and causal 
or reactive alterations in CNS diseases remain mostly 
uncharacterized (FIG.  1c). Nevertheless, these new 
resources serve as an important foundation and proof of 
the value of such tissue- and stage-specific profiling data.

Molecular profiling and network approaches in  
disease-relevant neuroscience research face several 
major challenges when applied to the CNS: the com-
plexity of molecular phenotypes owing to cell type, 
spatial and temporal heterogeneity throughout nervous 
system development and maturation (BOX 1); a dearth of 
human tissue and model systems with definitive human 
relevance (the ‘translational’ and ‘evolutionary’ prob-
lems4,18,19); and poor knowledge of appropriate interme-
diate phenotypes to measure. Although these challenges 
are not unique to studying the CNS, neuroscience has 
historically struggled with each of them owing to the 
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Genetic architecture
For genetic variants, the 
relationship among allele 
frequency, effect size, number 
of contributing variants and 
how they quantitatively 
influence a given trait.
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Abstract | Genetic and genomic approaches have implicated hundreds of genetic loci in 
neurodevelopmental disorders and neurodegeneration, but mechanistic understanding 
continues to lag behind the pace of gene discovery. Understanding the role of specific 
genetic variants in the brain involves dissecting a functional hierarchy that encompasses 
molecular pathways, diverse cell types, neural circuits and, ultimately, cognition and 
behaviour. With a focus on transcriptomics, this Review discusses how high-throughput 
molecular, integrative and network approaches inform disease biology by placing human 
genetics in a molecular systems and neurobiological context. We provide a framework for 
interpreting network biology studies and leveraging big genomics data sets in neurobiology.
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Molecular systems or 
integrative network 
approach
Systems biology methods  
that use high-throughput 
quantification, analysis and 
interpretation of the molecular 
relationships within and across 
molecular levels, including  
the genome, transcriptome, 
epigenome, proteome and 
other ‘omes’.

Systems neuroscience
An area of neuroscience  
that focuses on short-  
and long-range circuits  
that are usually related  
to specific behavioral or 
cognitive functions (vision, 
motor function, attention  
and so on).

Gene network
A graph consisting of genes as 
nodes connected by edges 
that represent relationships 
between genes.

Differential gene expression 
analysis
(DGE analysis). An approach 
commonly used in 
transcriptomic studies that 
serially compares thousands  
of genes between groups  
(for example, disease and 
controls) to evaluate the mean 
difference and its significance 
for each gene independently.

extent that they affect the ability to link molecular func-
tion to behavior and cognition. Foundational aspects of 
each point have not been agreed: the definition of a cell 
type in the brain remains controversial20,21; the relation-
ships of human disease phenotypes to developmental 
trajectories are relatively unknown; model systems in 
many neurobiological studies are often chosen on the 
basis of convenience and history; and most phenotypes 
are based on clinical and behavioural symptomatology 
rather than on biological mechanism or aetiology22–24.

In this Review, we provide an overview of integrative 
genomics approaches that have been applied to under-
stand the basis of CNS disorders, and we anchor this 
discussion around transcriptomics (BOX 1). However, the 
themes discussed can be generalized to genomic, prot-
eomic and epigenomic methods. We describe how large-
scale molecular data sets and gene network approaches 
provide organizing principles that permit the develop-
ment of testable hypotheses on a genome-wide scale. We 
discuss new insights into neurodevelopmental disorders 
and neurodegenerative diseases from these studies, 
highlight emerging themes and provide recommen-
dations for designing and executing future molecular  
profiling studies.

Network biology and transcriptomics in the brain
Despite challenges in studying the CNS, dozens of 
informative transcriptional analyses of neurodevelop-
mental and neurodegenerative disorders have been car-
ried out in the human brain. A major challenge, which 
has mostly been surmounted at the theoretical level 
and which now requires reduction to practice, has been 
measuring and identifying which genes are altered in 
disease in specific cells, circuits and regions. Differential 
gene expression analysis (DGE analysis) addresses this 
issue, albeit one gene at a time, but does not take into 

account the relationships between genes. This leads to 
additional challenges, including the interpretation of 
long lists of differentially expressed genes and integra-
tion of DGE sets with other data. Network methods 
(BOX 2) relate genes to each other using the measured 
or predicted relationships between them4 and provide 
an essential organizing framework that places each gene 
in the context of its molecular system. Gene network 
methods are now being applied to integrate genetics 
with transcriptomics, epigenomics and proteomics to 
identify causal molecular drivers of cellular, circuit-
level and brain-wide pathology in disease. We review 
the principles of network analysis below and also 
delve into applications of molecular systems and inte-
grative network approaches in neuropsychiatric and  
neurodegenerative disease.

Networks organize biology. For gene expression studies, 
co‑expression network analysis leverages the fact that 
gene expression reflects the state of the cellular or tissue 
system that is being analysed25. A major advantage of 
network analysis over DGE analysis is that it can iden-
tify multiple levels of molecular organization within 
the hierarchy of brain region, cell type, organelle and 
molecular pathways using only transcriptional data,  
and can thus enable integration with other information, 
such as known pathway annotations, protein interactions 
and other molecular profiling data11,12,26,27 (BOX 1; FIG. 2a). 
Furthermore, when thousands of genes might be differ-
ential between conditions, network analysis can subdi-
vide changes into smaller, more biologically coherent  
sets of modules for further experimental analyses.

Networks organize genome-wide molecular data by 
modelling molecules as nodes (typically genes or gene 
products) and the relationships between nodes as edges. 
Edges are not necessarily physical interactions — they 
may also reflect statistical similarity (for example, corre-
lation or mutual information), computational inference or 
combinations of these edge types (FIG. 2b). Edges define 
the connectivity of nodes to each other in a network, and 
this connectivity can be used to organize and analyse 
the nodes. Many biological networks have a hierarchical 
structure such that their nodes can be organized into a 
relatively small collection of highly interconnected mod-
ules4,28,29 (FIG. 2c). Inter-modular connectivity reflects a 
higher-order structure of biological relationships in 
a gene network, and intra-modular connectivity can 
identify which genes are biological hubs within modules. 
In co‑expression networks, hubs are highly connected 
genes; being a hub is an indication of the importance of a 
gene in the process of interest. Hubs can be key molecu-
lar drivers, such as transcriptional regulators that drive 
co-expression30,31, or they may annotate a module by 
reflecting the predominant biological role of the module. 
For example, when evaluating co‑expression across brain 
regions, hubs in modules that are associated with spe-
cific regions, such as the cerebellum, are usually markers 
for predominant cell types, such as granule cells11,12,26,32.

Modularity is very useful, and although it provides 
a general organizing principle in biology, it need not be 
present in all constructed networks, and network biology 

Figure 1 | Molecular systems and the neurobiological hierarchy.  a | Genetic variants 
exert their effects on cognitive and behavioural phenotypes associated with 
neurodevelopmental or neurodegenerative disease through a neurobiological hierarchy 
that includes multiple molecular levels (transcriptomic, proteomic and epigenomic) that 
can be modelled as networks on the basis of physical interactions and correlations within 
and across multiple molecular levels (BOX 2). These molecular levels of organization can 
vary at multiple neurobiological phenotypic levels (cells, circuits, and cognition and 
behaviour) across the lifespan. b | Gene expression levels vary dramatically across 
development and ageing, brain regions and cell types, as illustrated by three genes: 
SMARCC2, which is a pan-regional neurodevelopmental gene; MET, a regionally 
patterned adult neuronal gene; and OLIG1, a gene most highly expressed in white matter 
and oligodendrocytes. Development and ageing data are from BrainCloud17, regional 
data are from Braineac16 and cell type expression data are from fluorescent-activated cell 
sorted transcriptomes from mouse cortex162 (http://web.stanford.edu/group/barres_lab/
brain_rnaseq.html). c | Both the molecular and phenotypic levels exhibit a typical 
trajectory with normal variation during development and ageing that can be altered in 
disease, resulting in abnormal temporal trajectories. The x axis on this plot reflects the 
progression of time, and the y axis reflects theoretical deviation from the normal 
trajectory for any molecular or phenotypic measurement. CPi, inner cortical plate; CPo, 
outer cortical plate; CRBL, cerebellum; FCTX, frontal cortex; HIPP, hippocampus; ISVZ, 
inner subventricular zone; IZ, intermediate zone; lncRNA, long noncoding RNA; MEDU, 
brainstem medulla; miRNA, microRNA; OCTX, occipital cortex; OSVZ, outer 
subventricular zone; PUTM, putamen; SNIG, substantia nigra; SP, subplate; TCTX, 
temporal cortex; THAL, thalamus; VZ, ventricular zone; WHMT, subcortical white matter.

◀
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Modules
Also known as clusters, cliques 
and communities. Highly 
interconnected subsets of 
genes in a gene network;  
for example, genes in a 
transcriptomic network  
sharing highly similar patterns 
of gene expression.

Nodes
Molecular entities that 
constitute a network; for 
example, genes in a gene 
network or proteins in a 
protein interaction network.

Edges
The relationships between 
nodes in a network delineating 
some measure of shared 
function; for example, 
correlations or physical 
interactions.

Mutual information
A measure of dependence 
between two variables that can 
capture complex relationships, 
including nonlinear and 
nonmonotonic patterns, that 
could be missed by linear 
correlation measures.

provides many module-free analytical approaches; for 
example, nodes can be organized in relation to each other 
by ranking direct and indirect connectivity. If two gene 
products share an edge, they are said to be neighbours  
in the network; the more highly interconnected, the closer 
the neighbours. Thus, gene products that are involved in 
an unknown cell type or biological process can be anno-
tated on the basis of their proximity to marker genes of 
known function (‘guilt by association’)26,33,34. Additionally, 
both modularity and connectivity rankings can be com-
pared between studies to assess whether they are pre-
served35, and how a module or the position of specific 
genes within a module change in health and disease 
can be evaluated to prioritize those that show the most  
significant changes for further evaluation35–37.

Different approaches to gene co‑expression. The most 
common workflow in gene co‑expression network 
analysis in neuroscience involves the construction of 
co‑expression relationships from microarray or RNA 
sequencing (RNA-seq) data, identifying modules and then 
annotating modules on the basis of the known function of 
module hubs, enrichment for gene sets and module-level 
association with biological factors such as disease (FIG. 2a). 
Discussion of the various options and the technical mer-
its of specific network approaches is beyond the scope 
of this Review38–41. Comparisons among methods have 

indicated several important points: weighted networks are 
more reproducible and powerful than binary networks42; 
signed networks are more predictive of protein interac-
tions and shared pathway relationships than unsigned 
networks38,42,43; weighted networks constructed with the 
topological overlap of correlation (for example, by weighted 
gene co‑expression network analysis (WGCNA)42,44) have 
similar sensitivity and specificity for detecting true net-
work structure for experiments involving monotonic 
relationships as do networks constructed with nonlin-
ear association measures such as mutual information 
(for example, by the Algorithm for the Reconstruction 
of Accurate Cellular Networks (ARACNE)45)38,39; and 
edge relationships using mutual information or other 
association measures might be necessary to accurately 
detect modules in time-series data, which can be non-
monotonic46–48. Differential co‑expression or connectivity 
methods36,37 are additional means for determining gene 
connectivity changes between conditions and can identify  
disruption or gain of function in pathways.

We provide guidelines in BOX 3 to aid co‑expression 
network reproducibility regardless of the method used. 
Importantly, the replication of major conclusions in 
independent data and experimental validation lend the 
greatest confidence to a network analysis. There is a need 
for studies that rigorously compare network analysis in 
human CNS transcriptome data using experimental vali-
dation as a gold standard, similar to what has been done 
in the Dialogue on Reverse Engineering Assessment 
and Methods (DREAM) regulatory network inference 
challenge49. The DREAM challenge identified that  
the integration of multiple network methods yields the 
most robust regulatory relationship predictions49. This 
leveraged the availability of hundreds of gene expression 
profiles in single-cell organisms (bacteria and yeast) and 
compared regulatory predictions between methods with 
gold standard experimental validations. Building such 
regulatory networks in complex tissues such as the CNS 
is a step beyond current co‑expression networks in the 
brain. Large amounts of data, ideally from homogene-
ous cellular populations, are necessary to systematically 
and accurately predict gene regulatory relationships in 
network studies.

Literature-curated data. There are many databases 
that aggregate experiments to construct genome-wide 
data sets that can be utilized for network construction 
(TABLE 1). Gene networks that are built on data that con-
tain even a small fraction of literature-curated compo-
nents can contain substantial bias. Furthermore, when 
data are from non-neuronal tissue, the database may con-
tain relationships not found in neural tissues (TABLE 1). 
Although reliant on data from non-neuronal tissue, path-
way databases such as the Gene Ontology (GO50), the 
Kyoto Encyclopaedia of Genes and Genome Elements 
(KEGG51), Ingenuity Pathway Analyses and MetaCore 
are valuable for evaluating specific genes and pathways. 
However, networks with edges that are derived from 
shared pathway membership can reflect cellular states 
that might not be found in the CNS, and they will cer-
tainly lack many important CNS-specific relationships. 

Box 1 | The unique cytoarchitecture and development of the brain

Most neurodevelopmental and neurodegenerative disorders are defined by 
perturbations in specific cognitive and/or behavioural domains, pointing to a selective 
vulnerability of specific cells. Regional and cellular heterogeneity pose obstacles for 
transcriptomic studies in the central nervous system (CNS)100,200, but whole-tissue 
investigations in post-mortem human brain tissue are essential for identifying 
human-relevant global changes. These changes can be compared across regions to 
identify the most vulnerable regions and time points for further investigation. In 
general, the value of whole-tissue profiling in post-mortem brain tissue depends on 
the disease. In neurodevelopmental disorders, the specific brain regions, cell types or 
time points that are most affected remain poorly defined and whole-tissue profiling 
still holds great value. By contrast, for many neurodegenerative diseases, the selective 
death of certain cellular populations and the infiltration of inflammatory cells is well 
characterized, so transcriptomic studies focusing on sorted cellular populations are 
now necessary to identify new associations with disease.

To maximize neurobiological understanding from whole-tissue profiles, global 
changes can be related to cell type-specific gene expression profiles30,32,149,163,201, and 
targeted experiments can be carried out to identify novel insights, as highlighted by 
several recent studies202–205. However, it will be impossible to study disease-affected 
cell types without a complete knowledge of cell identities in normal brain 
development and ageing. A priority is to develop a complete knowledge of the cellular 
identity and cytoarchitectural changes that occur over time. This will necessitate 
surveying the diversity of cellular types and deciphering their molecular identities 
using single-cell approaches206–208.

Additionally, neuronal gene expression and epigenetic programmes also undergo 
changes at finer spatial and temporal scales, including changes induced by 
activity-dependent transcription in the nucleus and translation209 at the synapse. 
Locally regulated translation of these subcellular transcriptomes210 has a crucial role in 
synaptic function and plasticity211. Deeper characterization of these events at a high 
spatiotemporal resolution in normal brains followed by integration with coarser 
profiles from specific diseases will identify cellular compartments and mechanisms for 
more targeted study that are currently missed. Network approaches are particularly 
useful for relating whole-tissue-level changes to data from these high-resolution 
experiments11–13,26 (FIG. 2a).
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Hubs
Genes in a network or module 
that are highly connected; that 
is, they have a relatively high 
number of edges compared 
with other genes.

RNA sequencing
(RNA-seq). An assay for 
measuring RNA transcript 
levels in a genome-wide 
manner that involves the 
extraction of RNA followed by 
construction of cDNA libraries 
that undergo high-throughput 
sequencing.

Weighted networks
Networks in which the edges 
have continuous values, with 
higher values reflecting an 
increased strength or 
probability of connectivity.

In a worst-case scenario, hubs in these networks may 
be the most studied genes in other areas of biology, and 
therefore may not reflect neurobiological relevance. It 
is therefore important to distinguish between networks 
that are constructed using edges from pathway data-
bases and those using edges derived from tissue-specific  
primary molecular profiling experiments.

Protein–protein interaction (PPI) databases, which 
compile known physical interactions between proteins, 
are another example of literature-curated data. PPI 
experiments may focus on a few proteins and evaluate 
interactions in a tissue-specific manner using co‑immu-
noprecipitation followed by proteomics. Alternatively, 
most genome-wide PPI experiments use methods such 
as yeast two-hybrid (Y2H) screens or tandem affinity 
purification and are cell type agnostic. The genome-
wide approaches yield many more interactions, so most 
databases typically combine both target-focused and 
genome-wide experiments52. Similar to pathway data-
bases, these PPI data sets are biased to highly studied 
gene categories (for example, those implicated in cancer 

biology) and are still generally incomplete2,53 (TABLE 1). 
A particularly salient example of the utility of defining 
tissue-relevant networks is the power obtained by using 
PPIs derived from cardiac tissue to identify new human 
loci for long QT syndrome54. To reduce bias and improve 
tissue specificity for genome-wide networks in the 
absence of tissue-specific PPIs, one approach is to inter-
sect tissue-specific RNA expression or co‑expression  
with literature-curated PPI data55,56.

These considerations also apply to other physical inter-
action data, including CLIP–seq, ChIP–seq and miRNA 
binding data, unless they come from experiments using 
relevant tissues57. Computational approaches to predict 
physical interactions can partly circumvent bias (TABLE 1), 
but they do not address tissue specificity, and there 
may be relatively low reproducibility across different  
methods 58,59. There is compelling evidence that using DNase  
hypersensitivity or ATAC-seq data to infer open chromatin, 
followed by combining transcription factor binding with 
open chromatin footprinting, can provide a powerful and 
comprehensive way to identify tissue-specific transcription 
factor regulation60,61. The increasing availability of large 
amounts of relevant data sets within the public domain10,14 
now permits the evaluation of network modules for com-
plex regulatory relationships by combining network 
edges from statistical associations, time-series data,  
physical binding and computational predictions (FIG. 2b).

When combining multiple molecular levels in net-
works, it is important to recognize that transcriptom-
ics, epigenomics and proteomics all query unique levels 
of cellular or tissue organization. For example, most 
proteins found only in mitochondria do not physically 
interact with most proteins found only in ribosomes or 
proteasomes, and these proteins would normally form 
distinct (but possibly connected) modules in PPI net-
works. However, in circumstances such as cellular stress 
or neurodegeneration, the genes encoding these orga-
nelle-specific proteins might be transcriptionally co‑reg-
ulated and hence highly connected at a co‑expression 
level. In this case, transcriptomics can provide a novel 
view of cellular mechanisms. In general, tissue-, time- 
or disease-specific data sets aid in conferring specific-
ity to otherwise non-neuronal data. Until such data 
are available, we suggest beginning with genome-wide 
tissue-specific data such as transcriptomics, followed 
by combining literature-curated or non-tissue-specific 
evidence with gene co‑expression modules.

Neurodevelopmental disorders
Neurodevelopmental disorders are characterized by 
abnormal behavioural or cognitive phenotypes origi-
nating either in utero or during early postnatal life, and 
can be accompanied by clinical features outside the CNS. 
Various genetic approaches have been successful in iden-
tifying the causes of more than 1,000 Mendelian, and 
fewer non-Mendelian, forms of neurodevelopmental 
disorders: prototypical examples are intellectual disabil-
ity62–68, autism spectrum disorder (ASD)69–77, epilepsy78,79 
and schizophrenia80–82.

As more genetic risk variants for these disorders 
have been discovered, studies have found remarkable 

Box 2 | A framework for interpreting gene network analysis

Molecular profiling data can be modelled as a network in which molecules or gene 
products are nodes and their functional relationships with each other are edges.  
Gene network analysis can be summarized in five basic steps.

Node specification
Seeded (prior-based) networks have nodes that are selected using prior knowledge, 
such as genetic variants that are associated with a disorder, and unseeded 
(genome-wide) networks use all available measurements from the genome.

Edge specification
In order to define edges, studies need to include one or more of the following: 
experimentally observed pairwise statistical relationships25,212,213 evaluating shared 
patterns of molecular levels across experiments, such as co‑expression; experimentally 
observed or literature-curated physical interactions, such as protein interactions from 
immunoprecipitation and yeast two-hybrid (Y2H) experiments; or computationally 
predicted relationships, such as transcription factor binding based on DNA motifs. 
Notably, edges are susceptible to ascertainment biases52,214,215 and confounding factors 
that can induce spurious relationships178 (FIG. 2b).

Module identification
Modules are identified from an adjacency matrix to simplify biological relationships at a 
higher-order level, identifying interacting or highly correlated gene products (FIG. 2c). 
Assessing node connectivity or position within the module can identify hubs and 
enables the comparison of changes between health and disease at the module level. 

Annotation of modules or gene connectivity
There are several common approaches to annotate modules. External measures of gene 
importance (such as cell type specificity or genome-wide association study (GWAS) 
signals) can be related to module membership, intra-modular connectivity or 
network-wide gene connectivity. Module summary or hub gene measurements, such as 
module eigengenes or average expression levels, can be associated with biological traits. 
Any differential gene expression (DGE) test that can be applied at a single-gene level can 
be applied to module-level summaries, such as eigengenes. Module-level association 
reduces the problem of multiple comparisons, as there are far fewer modules than genes 
in a network. The preservation or changes in network connectivity for specific genes or 
modules can be assessed between health and disease. Data can be integrated at the edge 
level or the module level across biological levels, such as different cell types or brain 
regions, or different regulatory levels, such as gene expression and ChIP–seq signals.

Validation
The crucial issue of reproducibility is addressed by validating network observations in 
independent data or experiments (BOX 3; TABLE 1). Biological validation may involve 
experimental testing of mechanistic predictions.
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Binary networks
Networks in which the edges 
are all or nothing, either 
because this is inherent to  
the edge measurement (for 
example, physically interacting 
or not) or because a cut-off or 
threshold has been applied to 
a continuous measurement (for 
example, by applying a rule 
that all correlation values ≥0.7 
are 1, all others are 0).

Signed networks
Networks in which the direction 
of association is taken into 
consideration in addition to the 
magnitude of the correlation; 
for example, in a signed 
correlation network, high 
positive correlations are 
assigned high edge values, but 
high negative correlations are 
assigned low edge values.

Unsigned networks
Networks in which any high 
magnitude association is 
assigned a high edge value 
regardless of the direction of 
the association.

Topological overlap
A computation on direct edge 
relationships in a network that 
transforms them into indirect 
edge values that reflect the 
sharing of neighbourhoods 
between genes.

pleiotropy1,1,83,84. Several rare, highly penetrant muta-
tions in evolutionarily constrained fetal brain-expressed 
genes are associated with ASD, schizophrenia and intel-
lectual disability, as well as epilepsy83,85–87. We frame 
this issue using the concept of developmental canali-
zation88, whereby natural selection on developmental 
programmes in humans has led to robustness in a range 
of genetic or environmental perturbations89,90: typical 
development occurs along a ‘track’ (FIG. 1c). Under this 
framework, the observed pleiotropy is consistent with 
the notion that disrupting highly evolutionarily con-
strained genes leads to the ‘derailment’ of typical devel-
opment off this track, rather than setting the brain on 
a path to a specific clinically defined disorder (FIG. 1c). 
Thus, many severe mutations do not converge on one 
specific phenotype but instead seem to cause a range of 
clinical disorders74,76,80,81,84,87,91. This formulation leads 
to several important questions that can be informed by 
integrative genomic studies, including whether diverse 
genetic lesions affect similar pathways and where disease 
specificity emerges. We provide examples below of gene 
network studies that use co‑expression, PPIs and inte-
grated networks to understand ASD and schizophrenia.

Dysregulated networks in the brains of individuals with 
ASD or schizophrenia. ASD is a phenotypically and aeti-
ologically heterogeneous neurodevelopmental disorder 
that is defined by deficits in social communication and 
mental flexibility, with an onset in the first few years of 
life75. More transcriptional studies of ASD post-mortem 
brains have been limited by the paucity of available 
tissue, which has made them underpowered to iden-
tify reproducible pathways with statistical rigour92–95. 
Nevertheless, some themes have emerged across studies, 

including the increased expression of immune-microglial  
genes and the decreased expression of synaptic genes 
in the cerebral cortex. The first ASD study to identify 
reproducible, genome-wide findings used WGCNA42 
to identify two modules, one containing upregulated 
genes and another containing downregulated genes that 
defined coherent biological processes in ASD brains30. 
This study used co‑expression module eigengenes (the 
first principal component of the gene expression levels 
of each module) to identify modules associated with 
ASD and to ensure that they were unrelated to potential 
confounders such as RNA integrity, age or seizure his-
tory. This module-level association approach reduces 
the problem of multiple comparisons and highlights the 
advantages of using networks as an organizing frame-
work96. The integration of genetic data with co‑expres-
sion modules showed that the downregulated neuronal 
signalling module has a potential causal role in ASD, 
and that the upregulated ASD module was probably 
a response, which is consistent with its enrichment in 
microglia and astrocyte genes30. These results supported 
the findings of several previous smaller studies92,93. 
Synaptic and microglial modules have been replicated 
in ASD cortex using RNA-seq in larger independent  
cohorts97.

Schizophrenia is defined by prolonged or recur-
rent episodes of psychosis (characterized by hallucina-
tions and delusions) as well as negative symptoms and 
deficits in cognitive function98. Although diagnosis is 
usually made in late adolescence or early adulthood, 
extensive evidence indicates a neurodevelopmental 
origin99. Transcriptional studies of schizophrenia have 
benefited from considerably larger sample sizes than 
those of ASD. However, patients with schizophrenia 
have greater comorbidity of confounders such as smok-
ing, alcohol and substance abuse than those with ASD. 
Overcoming potential confounders requires careful 
matching of patient and control individuals and must 
take into account potential covariate effects when pos-
sible, as has been done in many studies100,101. Despite 
variable results, consistent findings across studies can 
be identified, including dysregulation of GABAergic 
signalling102; downregulation of oligodendrocyte- and 
myelination-related genes103, mitochondrial function 
or energy metabolism104, and synaptic genes105; and  
upregulation of immune and inflammatory genes106.

One of the first studies to put schizophrenia transcrip-
tomics into a genome-wide co‑expression network used 
mutual information and WGCNA107. This study showed 
that, as in ASD, the overall transcriptomic structure that 
is observed in control brains is intact but that a neural dif-
ferentiation module that is associated with schizophrenia 
does not follow the normal trajectory of downregulation 
with age. Another study confirmed that a dysregu-
lated neuronal differentiation module was consistently 
observed in schizophrenia post-mortem brains and sug-
gested that the same pathways were involved in bipolar 
disorder108. Moreover, genome-wide association study 
(GWAS) signal enrichment analysis30 found that com-
mon variants associated with schizophrenia and bipolar 
disorder were enriched in the neuronal differentiation 

Figure 2 | Flowchart of transcriptomic analysis and illustration of seeded and 
genome-wide approaches to network analysis.  A flowchart demonstrating the 
general approach to a transcriptomic study that uses differential gene expression (DGE) 
and network analysis (part a). Network-level features, such as connectivity ranking and 
module-level enrichment, allow the integration of many external data sources and 
experiments. Network analysis involves first (part b) connecting genetic or molecular 
nodes with information about pairwise relationships, which may be one or more of the 
following: statistical associations relating molecular patterns measured across 
experiments, such as variation in gene expression levels across brain regions; physical 
interaction data from experiments or curated from the literature such as transcription 
factor (TF) or RNA-binding protein (RNABP) binding or protein–protein interactions 
(PPIs); or computational predictions about TF or RNABP binding using motif enrichment 
analysis (here, U on the RNA motif is depicted as T). Next, the structure of the network is 
used to (part c) define modules using a seed-based or genome-wide approach, which 
groups together the genes that share similar edge-level properties. The seeded 
(prior-based) approach is shown on the left-hand side, and the unseeded (genome-wide) 
approach on the right-hand side. The seeded approach involves starting with genes of 
interest, expanding edges to bring in additional (unannotated) genes and identifying 
highly connected components as modules. The unseeded approach (right-hand side) 
involves starting with unannotated genes, using edges to identify interconnected 
components as modules and then evaluating where genes of interest fall in the resultant 
network structure. Modules from either approach can be further annotated with external 
information such as genetic associations and known pathways, integrated with 
additional data or used to prioritize targets for experimental validation (see BOX 2 and 
TABLE 1 for more details). Alternative depictions of the network analysis process are also 
available elsewhere28,41,169. GO, Gene Ontology; KEGG, Kyoto Encyclopaedia of Genes 
and Genome Elements.
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module, suggesting that disorders sharing a genetic 
architecture84 may also share functional transcriptional  
alterations: a hypothesis that warrants rigorous testing.

Mapping risk genes onto developmental networks. A 
shortcoming of studies using post-mortem brain tissue is 
that the tissue is usually obtained long after the disease-
causing changes have occurred. Given that the human 
brain transcriptome has a reproducible structure12,26, 
one useful way to explore how mutations in risk genes 
perturb typical brain development is to map risk genes 
onto transcriptional networks that represent normal 
brain structure or development (FIG. 1c). The first study 
to do this identified co‑expression modules that had cell 
type-specific and region-specific expression patterns 
using nearly 1,000 adult brain regions12,109, and identi-
fied neuronal gene-enriched modules containing ASD 
candidate genes and ASD GWAS signals. Moreover, this 
study found that genes in these modules have dynamic 
developmental trajectories, demonstrating a role for 
ASD risk genes in neural development.

The identification of genetic risk factors by whole-
exome sequencing70–73 and the availability of tran-
scriptome data spanning multiple brain regions and 
developmental stages13,17 created new opportunities to 
map disease risk genes onto developmental transcriptional 
networks. One network study defined robust co‑expres-
sion modules that were reproducible in independent data 
and identified five developmentally regulated co‑expres-
sion modules that were enriched for PPIs and ASD risk 
genes27. By comparing these genes with genes that cause 
intellectual disability, this study identified molecular 
processes that are preferentially disrupted by ASD risk 
genes, including transcriptional regulation, chroma-
tin regulation and synaptic development, and it identi-
fied disruption of specific pathways, such as BAF (SWI/
SNF) complex-mediated neuronal development 30,110,111.  
A complementary study identified developmental 
co‑expression networks enriched for ASD risk genes 
seeded around nine genes with the highest ASD asso-
ciation signal from whole-exome sequencing112. These 
investigators asked if, when and where ASD genetic 
risk converges during brain development by evalu-
ating seeded co-expression networks. They started  
with the nine ‘high-confidence’ risk genes and expanded 
the network using combinations of spatial and tempo-
ral expression data from post-mortem brain tissue. 
They identified three spatiotemporal combinations that 
passed stringent correction for multiple testing: frontal 
cortical regions during the fetal period, and thalamic 
and cerebellar regions from birth to 6 years of postnatal 
age. Interestingly, there was no pathway or PPI enrich-
ment in these modules, probably owing to the inclusion 
of both positive and negative correlations when com-
puting co‑expression relationships (unsigned networks), 
which is a method that is less sensitive to pathway and 
protein interaction detection38,43.

Importantly, both of these studies found conver-
gence for rare de novo ASD-associated mutations dur-
ing early fetal and mid-fetal development, with the 
greatest enrichment for risk in genes found in cortical 

Box 3 | Recommendations and general guidelines for transcriptomic studies

Experimental design
•	Randomize or balance sample preparation and data collection over all known factors 

to reduce confounding variation from batch effects, which can introduce spurious 
correlations. For RNA-seq, we recommend barcoding and multiplexing samples (over 
eight per lane) to reduce batch effects216.

•	Evaluate the contribution of both biological and technical factors via unsupervised 
methods such as principal component analysis178 and apply appropriate methods to 
remove unwanted variation from the data181,217.

•	RNA-seq studies with degraded RNA (RNA integrity number <9; essentially all 
post-mortem studies) should use ribosomal RNA depletion library preparation218. 
Sequencing samples with a read length of 50 bp with 10 million unique reads 
(20 million paired-end reads) will detect most highly expressed genes. Deeper 
sequencing and longer read lengths may be required to accurately and systematically 
detect noncoding RNAs, splicing or novel features, and pilot experiments are 
recommended for these scenarios.

DGE analysis
•	In most experiments, biological variability is greater than technical variability, so 

biological replicates are of greater value than technical replicates174,175,219.

•	For well-controlled experiments with expected changes of >twofold in many genes, 
three or more independent samples per condition are recommended175,219. For 
post-mortem samples, in which the detection of lower-fold changes may be important 
and variation may be greater owing to clinical heterogeneity and technical factors, at 
least 15 case and 15 control samples are recommended in an initial cohort.

•	Appropriately transformed and normalized sequencing data can be treated similarly 
to microarray data as far as statistical modelling and multiple corrections are 
concerned175,220. For differential gene expression (DGE), RNA-seq studies should 
observe existing analytical and statistical guidelines for microarrays221 and, if possible, 
should carry out pilot experiments to estimate power222.

Co‑expression network analysis
•	The power of network analysis is dependent on similar factors to DGE but is also 

dependent on the network features of interest. At currently available sample sizes, 
networks are most reproducible at a module level35,38,39, then at the hub gene level41,223 
and, last, at the level of precise gene connectivity rankings or precise module 
memberships of genes40,49.

•	To obtain module-level reproducibility, 20 independent samples are usually 
sufficient40, but systematic and accurate reconstruction of specific edges, particularly 
for systematic regulatory relationship discovery, may require hundreds of samples49. 
For studies comparing conditions, we recommend a minimum of 20 samples per 
condition. More samples may be necessary if many additional factors vary; for 
example, age, sex and different brain regions.

•	Given the large number of parameters in network analysis, there is no ‘one-size fits all’ 
solution. The most rigorous approach is to apply the empirical reproducibility criteria 
discussed below.

Reproducibility and biological value
•	Apply permutation analyses to ensure that gene network modules are significantly 

co‑expressed (interconnected).

•	To reduce over-fitting and to improve reproducibility, select the outcome of interest 
(fold change for each gene and gene membership in a module) and apply 
cross-validation or the bootstrap method224. 

•	Demonstrating reproducibility of major findings (for example, module definitions, top 
DGE genes and changes in gene network position between conditions) is the most 
convincing form of validation of a particular analysis. Replication involves identifying 
the outcome of interest, applying the same analysis as in the original study but to 
independent data, and demonstrating statistical replication of the same finding.

•	Generate hypotheses from the DGE and/or network analyses and test them 
bioinformatically or with wet-laboratory experiments to demonstrate predictive 
biological value.

•	To allow other researchers to examine the data sets, raw data should be deposited in a 
public database (such as GEO, SRA or dbGaP).

•	To allow for a comparison of analysis methods, always publish clear and usable code 
along with the publication reporting this analysis.
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Seeded (prior-based) 
networks
Network analysis approaches 
in which edges are ‘grown’ 
around ‘seed’ genes that are 
selected on the basis of 
previous experiments or prior 
hypotheses, and the network 
structure is dependent on 
these seed genes.

Unseeded (genome-wide) 
networks
Network analysis approaches 
in which edges are evaluated in 
a genome-wide manner, and 
network structure is not 
dependent on prior knowledge 
of a particular set of genes.

Adjacency matrix
A matrix of pairwise node–
node relationships that 
quantifies all possible edges in 
a network. Edge relationships 
may be determined from one 
data type or by weighting the 
contribution from multiple 
types of data.

glutamatergic neurons. Thus, despite the fact that the 
same gene is rarely hit recurrently by rare de novo vari-
ants in ASD, this class of variation preferentially dis-
rupts projection neurons. Notably, the genome-wide 
approach27 assessed both ASD and intellectual disability 
genes, and further suggested that the disruption of the 
upper neocortical layers (layers 2–4) is related to ASD-
like phenotypes and not intellectual disability. Other 
studies have also found that fetal cortical development 
and glutamatergic neurons are affected by mutations in 
ASD, suggesting that it is a robust finding11,113,114.

A seeded co‑expression approach has also been used 
to identify risk convergence in schizophrenia, identify-
ing fetal development of the prefrontal cortex as a point 
of convergence for de novo mutations115. This study did 
not extend the network to genes beyond the seed set, and 
it did not investigate cellular, laminar or regulatory rela-
tionships among these genes. As larger sets of risk genes 
are becoming available72,77,80,81, a more refined view will 
emerge of how mutations in ASD, schizophrenia, intel-
lectual disability and other psychiatric disorders overlap 
and diverge to affect cells and circuits.

Regulatory hubs in neurodevelopment and disease. 
Another promising approach to identify disease-associated  
networks is to experimentally construct a seed-based net-
work for a candidate regulatory molecule. Using CLIP–
seq, investigators identified the RNA binding targets of 
the translational regulator fragile X mental retardation 
protein (FMRP)116, and a subsequent analysis found that 
these targets are highly enriched for de novo mutations in 
ASD72. Both genome-wide27 and seeded114 co‑expression 

network analysis further connected FMRP targets with 
multiple forms of ASD genetic risk, including copy num-
ber variations (CNVs)114. Additionally, whole-exome 
sequencing studies of other neurodevelopmental dis-
orders have found enrichment for FMRP targets in rare 
mutations in schizophrenia81, intellectual disability68 and 
epilepsy78. As many FMRP targets are highly conserved 
and are under purifying selection72,87,117, FMRP-related 
activity-dependent regulation during fetal brain devel-
opment might be particularly vulnerable to genetic per-
turbations, with severe mutations resulting in disruption 
of developmental canalization.

At the transcriptional regulation level, ChIP–seq in 
induced pluripotent stem cell-derived neurons has been 
used to define the network of genes regulated by chro-
modomain helicase DNA-binding protein 8 (CHD8)118, 
which is the gene most frequently affected by ASD-
associated rare de novo variation72,119–121. Integration of 
ChIP–seq, CHD8 knockdown and gene co‑expression 
suggested that CHD8 directly regulates co‑expression 
modules that are enriched for rare de novo mutations 
and genes found in the proliferating layers of the fetal 
cortex27. Another study applied a similar approach but 
evaluated CHD8 targets in the fetal brain in vivo57. This 
study identified stronger enrichment for ASD muta-
tions, suggesting that ChIP–seq in the human brain 
at the right time point identifies interactions that are 
more disease relevant57. Given the emerging role of fetal 
brain-expressed transcriptional and chromatin regula-
tors in ASD27,77,122, integrating ChIP–seq of other tran-
scriptional regulators with developmental co‑expression 
networks may help to elucidate a shared, evolutionarily 

Table 1 | Different edge types in gene networks: practical and theoretical considerations

Gene co‑expression Protein–protein interaction Motif enrichment for 
transcription factors

Edge relationships Statistical association (correlation or mutual 
information)

Physical binding (interacting or not 
interacting)

Computational inference (motif 
binding scores)

Main advantages Indirectly predicts co‑regulation, physical 
interactions and cell type specificity; easiest 
to measure from tissue of interest

Based on direct physical interactions; 
predicts protein complexes and 
signalling pathways

Identifies putative co‑regulatory 
relationships without needing to 
carry out new experiments

Completeness of 
data across the 
genome

Most genes are similarly covered 
genome-wide

Incomplete assessment for most 
interactions; biased towards most 
well-studied molecules

Predictions restricted to 
availability and accuracy of 
available motif information

Tissue specificity Primary data are often tissue specific Primary data are rarely tissue specific Primary data not usually tissue 
specific

Module-level 
interpretation

Reflects cell types and transcriptionally 
co‑regulated biological processes

Protein complexes; signalling cascades; 
subcellular structures

Groups of transcriptionally 
co‑regulated genes

Interpretation of 
hubs

Cell type-specific markers; molecular 
regulators such as transcription factors or 
RNA-binding proteins

Key proteins in complexes; converging 
points of signalling cascades

Gene to which many transcription 
factors bind, perhaps under more 
complex regulation

Sources of bias Technical artefacts (RNA quality and batch 
effects); biological confounders (age and sex); 
post-mortem artefacts (cause of death)

Literature-curated data contain biases 
towards more well-studied interactions, 
which tend to be non-neuronal

Unlikely to reflect tissue-specific 
interactions or regulation without 
additional data

Examples of 
bioinformatic 
validation

Preservation of co‑expression in independent 
data; enrichment of physical interactions in 
modules

Enrichment of co‑expression from 
independent data

Enrichment of predicted binding 
sites from independent ChIP–seq 
data

Examples of 
experimental 
validation

Showing cell type specificity of hubs by in situ 
hybridization; demonstrating regulatory 
potential of hubs by hub gene knockdown

Co‑immunoprecipitation of proteins 
of interest; disruption of protein 
complexes when hubs are targeted

Showing changes in transcription 
of targets on perturbation of 
regulators

R E V I E W S

NATURE REVIEWS | GENETICS	  VOLUME 16 | AUGUST 2015 | 449

© 2015 Macmillan Publishers Limited. All rights reserved



CLIP-seq
An assay for measuring the 
binding sites of a protein on 
RNA transcripts in a 
genome-wide manner that 
involves crosslinking immuno-
precipitation followed by 
high-throughput sequencing.

ChIP-seq
An assay for measuring the 
binding sites of a protein on 
DNA across the genome that 
involves chromatin immuno-
precipitation followed by 
high-throughput sequencing.

DNase hypersensitivity or 
ATAC-seq
Sequencing methods that infer 
regions of the genome in a 
particular cell or tissue with 
open chromatin by exploiting 
the fact that these regions are 
preferentially accessible to the 
DNase I enzyme or a 
transposase.

Eigengenes
Module-level summaries of 
expression utilized in 
co‑expression networks 
calculated by taking the first 
principal component of the 
expression levels of genes in a 
module.

Psychosis
A mental state defined by a 
loss of contact with reality and 
characterized by exaggerations 
or distortions of normal 
perception.

Negative symptoms
Symptoms involving a loss of 
normal emotional responses, 
including a lack of motivation, 
an inability to experience 
pleasure and reduced 
expression through speech.

Unsupervised methods
Analysis approaches that use 
the intrinsic variation in data to 
define shared patterns without 
explicit prior knowledge of how 
the data should be grouped 
(for example, hierarchical 
clustering). This can identify 
novel clusters or groupings of 
data points. 

constrained regulatory network that is susceptible to 
disruption in brain development.

PPI networks define new interactions. Genetic inves-
tigations in ASD have constructed seed-based net-
works with literature-curated PPIs to identify the 
convergence of ASD risk genes71,73. This approach was 
applied to identify a highly interconnected PPI sub-
network among rare de novo variants in ASD71. Genes  
in this subnetwork were evaluated in a larger cohort in 
a targeted sequencing study120, which identified more 
risk variants compared with chance and demonstrated 
that PPI connectivity can be a predictor of ASD risk 
mutations. However, the biases inherent to literature-
curated data and the lack of tissue specificity in these 
PPI networks limit the identification of novel pathways 
or circuits with this approach (TABLE 1).

Recently, one study used global literature-curated 
PPI interactions in a genome-wide network analysis to 
identify modules that are enriched for ASD-associated 
genes123. This identified a PPI module that is enriched for 
genes related to synaptic function and weakly enriched 
for mutations from individuals with ASD. Integration 
with transcriptomics annotated the module as highly 
expressed in oligodendrocytes and the corpus callosum, 
demonstrating that tissue-specific data are essential for a 
neurobiological interpretation of PPI modules123. Given 
the biases inherent to global PPIs discussed above and 
in TABLE 1, these findings warrant replication with new 
PPI data. Understanding why these relationships are 
detected at the PPI level but not at the co-expression 
level will be valuable.

To evaluate whether ASD risk genes interact at the 
protein level in an unbiased manner, Sakai and col-
leagues124 carried out a Y2H screen of 35 syndromic or 
candidate ASD genes and identified many novel PPIs. 
This study was the first of its kind in neurodevelopmen-
tal disorders and showed that the PPI network seeded 
around these 35 genes was indeed highly intercon-
nected. Another Y2H study assessed a larger seed set 
of ASD candidate genes that corresponded to spliced 
isoforms identified by whole-brain RNA-seq125, hypoth-
esizing that isoform-level PPIs would allow for the dis-
covery of tissue-specific PPI networks126. The genes in 
the most interconnected component of the PPI network 
formed a module that was modestly enriched for gene 
co‑expression, gene co‑regulation and known ASD genes. 
These results further demonstrated convergence among 
known disease-relevant genes at the PPI level and also 
demonstrated that evaluating tissue-specific isoforms can 
be used to identify novel interactions. Both of these PPI 
studies used state‑of‑the-art quality control and valida-
tion, and identified many novel interactions. However, 
even with knowledge of isoform-specific interactions, the 
tissue environment for interaction cannot be efficiently 
recapitulated with current PPI approaches at a genome-
wide scale (TABLE 1). This, and other recent work studying 
cardiac tissue54, highlights how tissue-specific molecular 
data improve PPI analyses to identify or prioritize genetic 
variants that specifically function in that tissue, in this 
case causing cardiac arrhythmia.

Integrating multiple molecular levels. The idea that 
multiple lines of evidence may increase the power to 
detect disease-relevant interactions has motivated 
the integration of literature-curated, molecular and 
genetic evidence to support specific genes or pathways. 
The Network-Based Analysis of Genes (NETBAG)127 
approach combines multiple forms of literature-curated 
data using an integrated network approach that has been 
demonstrated to be effective for predicting gene essen-
tiality in yeast128. The goal of NETBAG is to construct a 
network in which highly interconnected genes are likely 
to participate in a similar phenotype. Edges in NETBAG 
are predominantly derived from multiple PPI databases, 
GO50 and KEGG51, which are all literature-curated data-
bases, and thus NETBAG is susceptible to the biases dis-
cussed above. The first study with NETBAG evaluated 
CNV-hit genes implicated in ASD and found a highly 
interconnected module related to synaptic function129. 
Furthermore, genes in CNVs from females contrib-
uted more to the module connectivity than those from 
males, suggesting that females are affected by more 
severe genetic hits in ASD, an observation that has been 
replicated in exome-sequencing studies76,117. Another 
approach130 has evaluated CNV duplications in addi-
tion to CNV deletions and also found an interconnected 
PPI network that was enriched for proteins involved 
in synaptic transmission, validating the observation 
that pathogenic CNVs affect similar gene networks127. 
An extension of the NETBAG approach (dubbed 
NETBAG+) has also been applied to simultaneously 
evaluate large sets of single-nucleotide variants (SNVs) 
and CNVs in schizophrenia131 and ASD132, confirming 
the convergence of disease genes onto shared pathways.

An exciting approach is to simultaneously integrate 
PPIs, co‑expression and mutational burden in neurode-
velopmental disorders, as has been done by Merging 
Affected Genes into Integrated networks (MAGI133). 
This approach begins with mutation-affected genes in 
their known pathways and then adds genes to these ‘seed 
pathways’ on the basis of high co‑expression or PPI con-
nectivity. The extent to which genes are added to make 
a module is determined by an objective function that 
maximizes pathogenic mutations from cases compared 
with controls in the module. MAGI identified modules 
containing functionally related genes enriched for del-
eterious mutations in ASD, many of which are under 
strong purifying selection, and are also found in epilepsy, 
schizophrenia and intellectual disability133.

Neurodegenerative disease
Neurodegenerative diseases are characterized by a pro-
gressive loss of neural tissue that results in a decline 
in cognitive and behavioural function. Many of these 
diseases have known causes that involve mutations 
in ubiquitously expressed proteins134, but they follow 
stereotyped patterns of degeneration that selectively 
affect certain cell subsets more severely, resulting 
in disease-specific spatial and temporal patterns of 
degeneration135–137 (BOX 1). Neuropathological investiga-
tions have identified protein-centric mechanisms that 
might be involved in disease pathogenesis, but causal 
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Expression quantitative 
trait locus analysis
(eQTL analysis). A specific case 
of genotype-to-phenotype 
association that uses RNA 
transcript levels as the 
phenotype in order to identify 
genetic loci that regulate RNA 
levels.

Selective vulnerability
The relative susceptibility of 
specific brain regions, cell 
populations or time points to 
genetic or environmental 
insults that result in disease.

mechanisms are difficult to pinpoint, as post-mortem 
samples reflect the consequence of years of ageing and 
disease progression. Important disease-associated 
molecular changes can be confounded by environmen-
tal and clinical factors. Additionally, although positional 
cloning has identified genes and pathways that are 
involved in many neurodegenerative diseases, patholog-
ical mechanisms, modulators of pathogenesis and dis-
ease biomarkers have remained elusive, suggesting that 
genome-wide approaches are needed. Transcriptional 
and PPI network studies have recently identified many 
new insights into these diseases. Below, we focus on 
representative transcriptomic studies of two genetically 
complex diseases (Alzheimer disease and frontotempo-
ral dementia (FTD)) and PPI studies of two diseases for 
which causal genes are well defined (Huntington disease 
and inherited ataxia), but for which disease mechanisms 
are still poorly understood.

Post-mortem transcriptomic analysis in dementia. 
The major challenge in Alzheimer disease and FTD 
transcriptomics has been the identification of changes 
that are independent of alterations in cell type propor-
tions, which accompany cell death and inflammation. 
Three major study design principles have been used 
to overcome this issue: transcriptomes in differentially 
vulnerable brain regions or cellular populations can 
be compared to identify vulnerable or protected path-
ways138,139 (BOX 1); preclinical changes in at‑risk individu-
als with a milder disease presentation can identify genes 
and pathways that might lead to disease140; and cell type-
specific markers can be used in combination with bioin-
formatic analyses to account for the effect of changes in 
cell proportion on the overall transcriptome141,142.

Multiple transcriptomic studies of Alzheimer disease 
have been carried out in the human brain at varying spa-
tial resolutions143. Large studies using quantitative met-
rics of severity140 and differentially vulnerable regions144 
have identified pathway-level changes in transcriptional 
regulation, apoptosis, cell proliferation, energy metabo-
lism and synaptic transmission. One particularly power-
ful approach involved the use of the pattern of regional 
vulnerability to guide a microarray study that identified 
a defect in the retromer complex, which is responsible for 
endosome-mediated recycling of membrane proteins145. 
The involvement of this pathway in Alzheimer disease 
was experimentally validated146. The first large transcrip-
tomic study (involving 188 controls and 176 individuals 
with Alzheimer disease)147 connected genetic variation 
to expression changes by using expression quantitative trait 
locus analysis (eQTL analysis) in controls and Alzheimer 
disease, and further supported the pathway-level findings 
related to transcriptional regulation and energy metabo-
lism in Alzheimer disease140,148. Integration of eQTLs can 
identify causality in transcriptomic studies in the context 
of Alzheimer disease risk, adding a crucial mechanistic 
element to studies of post-mortem gene expression.

In FTD, transcriptional signatures related to dif-
ferential regional vulnerability have helped to identify 
modulators of neurodegeneration. The first of two 
well-powered studies that applied this approach carried 

out transcriptomic analysis in a mouse model of FTD, 
identifying the gene Npepps138. Cross-species analyses 
in flies and humans confirmed the expression pattern 
and neuroprotective effect of NPEPPS138. The second 
study139 compared post-mortem tissue from patients 
with FTD harbouring dominant mutations in the pro-
granulin (GRN) gene, patients who had FTD but who 
did not have a known family history or mutations, and 
control individuals. This study also leveraged regional 
vulnerability by comparing transcriptome profiles in the 
frontal cortex, hippocampus and cerebellum, identify-
ing a diminishing hierarchy of susceptibility to FTD. 
The findings demonstrated that GRN-positive individu-
als were a transcriptomically distinct group from those 
with sporadic FTD139. Both of these studies in FTD 
demonstrate the value of using selective vulnerability and 
differential genetic risk in study design.

From individual genes to networks and mechanism. 
Most early post-mortem studies from individuals with 
Alzheimer disease or FTD generated long gene lists 
and were followed by analysis of GO or KEGG pathway 
enrichment139,140,147. In an early network study, Miller 
and colleagues149 applied network analysis to compare 
the transcriptome in normal ageing and Alzheimer dis-
ease, finding many shared features that were downregu-
lated in Alzheimer disease and normal human ageing149. 
They subsequently150 incorporated more than 1,000 
microarrays from mouse models of Alzheimer disease 
and human patients with Alzheimer disease from public 
databases to reproduce and extend these results, identi-
fying additional co‑expression modules that are related 
to mitochondrial dysfunction and synaptic plasticity. 
This work also found major differences in dementia 
susceptibility genes between humans and mice, poten-
tially identifying why some mouse models might not 
recapitulate human neuropathology. Another study used 
similar methods to identify overlap in transcriptional 
networks between vascular disease (a major risk factor 
for dementia) and Alzheimer disease, identifying poten-
tial molecular mechanisms that might underlie their co-
occurrence151. Forabosco and colleagues152 used network 
analysis to explore the function of TREM2 (triggering 
receptor expressed on myeloid cells 2), an Alzheimer 
disease risk gene, suggesting a role for microglial func-
tion and further implicating neuroinflammation in 
Alzheimer disease. In FTD, two studies re‑analysed pub-
lished transcriptome data139 to discover a role for WNT 
signalling in GRN-mediated FTD153,154. Both involved 
extensive bioinformatic analyses of expression data 
from in vitro neural progenitor models and identified 
transcriptomic changes shared across the post-mortem 
human brain, human neural cell lines and the mouse 
brain. Experimental validation of predictions from these 
networks showed that this cross-species approach can 
identify consistent, high-confidence perturbations in 
neurodegenerative disease46,153. Additionally, the use 
of previously published human data in many of these 
studies highlights the value of policies supporting data 
sharing, especially from patient cohorts. Finally, stud-
ies of the regulatory networks and targets of specific 
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Causal anchor
A causal factor, such as genetic 
variation, that can be used to 
orient edges to transform an 
undirected correlational 
network to a directed causal 
network.

miRNAs such as miR‑339‑5p in dementia are in their 
early stages155–157 but promise to reveal novel regulators 
of neurodegeneration.

Although transcriptomic studies have furthered our 
understanding of disease mechanisms beyond neuro-
pathology and single genes, the effects of cell type loss 
have not been completely accounted for in most studies. 
Purifying cell populations or carrying out transcriptional 
analyses on single cells158–163 can identify important 
changes that are not apparent in whole-tissue transcrip-
tomes141,142. Combining bioinformatics approaches with 
single-cell sequencing will increase the resolution at 
which regional vulnerability can be assessed and will 
enhance the ability of gene co‑expression networks to 
identify key changes associated with dementia.

Protein interaction networks with known disease genes. 
The causal mutations for Huntington disease and many 
inherited ataxias have been known for more than a dec-
ade, and thus the focus of molecular investigations has 
been on understanding disease mechanisms and modi-
fiers. Lim and colleagues164 used a seed-based approach 
based on a Y2H screen to identify interactors of the 
protein products of multiple causal and candidate genes 
in inherited ataxias. Analysis of the resultant PPI net-
work identified an interconnected network of proteins 
related to inherited ataxias. Importantly, interactors in 
the network were potential modifiers of disease progres-
sion, and, in subsequent work, gain of function medi-
ated by a newly identified protein complex was found 
to mediate disease pathogenesis165. This Y2H approach 
has also been used to identify potential modulators of 
Huntington disease166, in which it is thought that inter-
actors of huntingtin (the causally mutated pathological 
protein) might modulate disease severity. Interestingly, 
in vivo PPI screening by large-scale co‑immunopre-
cipitation and mass spectrometry provided tissue- and 
time-specific information that was not found by Y2H 
studies167. WGCNA identified spatially and temporally 
specific modules associated with mutant Htt (which 
encodes huntingtin); and proteins with high intra-
modular connectivity (hub proteins) modulated neuro-
degeneration in flies. This work further emphasizes the 
importance of considering tissue context in the studies 
examining disease-relevant protein associations.

Integrating genetic variation and transcriptome net‑
works. The most ambitious and exciting goal in systems 
biology is to elucidate the functional genetic architecture 
of diseases by systematically identifying causal effects 
using genome-wide variation to disambiguate primary 
and secondary changes that occur in disease168,169. A 
recent study shows that this goal is possible in the CNS 
by using genetic variation as a causal anchor to define 
genetically driven network-level changes in Alzheimer 
disease and to provide experimental validation for net-
work predictions170. Zhang and colleagues170 applied 
WGCNA to hundreds of post-mortem brain samples 
from individuals with Alzheimer disease, other neuro-
degenerative diseases and controls. They showed that 
multiple transcriptional modules were remodelled in 

Alzheimer disease: gain of connectivity was observed 
in immune and neurogenesis pathways, and loss of 
connectivity was predominant in pathways related to 
GABA signalling and myelination. An eQTL analysis 
followed by module-level genetic signal enrichment 
identified several modules in which genetic associa-
tion signals were enriched. Given that gene expression 
changes are caused by genetic variation, this suggested 
these modules were causally involved171. The research-
ers then applied Bayesian network analysis to evaluate 
causal relationships in an Alzheimer disease-related 
microglial module, implicating TYROBP (TYRO pro-
tein tyrosine kinase-binding protein) as a regulatory 
hub. The role of Tyrobp was experimentally validated in 
mice170, showing that network structure is predictive, as 
had previously been demonstrated with co‑expression 
networks32. Overall, integrating genetics with co‑expres-
sion networks using large sample sizes (with a minimum 
of 100 cases and controls) and establishing causality by 
evaluating genotype–phenotype relationships and eQTL 
is very promising.

Specificity and convergence across CNS disorders
Many of the most influential studies using gene net-
works to probe neuropsychiatric disease mechanisms 
integrate multiple data types (for example, RNA expres-
sion, GWAS signals and PPI) or data sets (for example, 
human post-mortem, mouse and in vitro), emphasiz-
ing the value of publicly available data sets. The further 
availability of raw molecular profiling data with neces-
sary metadata amplifies the value of individual studies. 
In addition to generating new hypotheses, molecular 
systems approaches integrating data from diverse stud-
ies can reveal unexpected and distinct relationships 
that are common to different CNS disorders. FIGURE 3 
describes an example of a network-based meta-analysis 
of brain transcriptional profiles from publicly available 
data in ASD, schizophrenia and Alzheimer disease, 
which identifies shared and distinct biological processes 
across disorders. Several modules are shared by two of 
the three disorders, including the red module (ASD and 
schizophrenia), which contains voltage-gated calcium 
channels, and the green module (ASD and Alzheimer 
disease), which contains microglial markers (FIG. 3b–d). 
This demonstrates how cross-disorder analyses can 
systematically reveal shared and distinct biological pro-
cesses among disorders, even when the data are from 
different studies (see Supplementary information S1 
(box)). It will be fruitful to combine more CNS disorders 
and diseases and to integrate GWASs and rare mutations 
to identify which variants affect gene expression across 
diagnostic boundaries and which are more specific. 
Prioritizing the disease-specific genes for further investi-
gation may also aid in clarifying the molecular processes 
that lead to behavioural and cognitive alterations that are 
specific to a particular disease.

Guidelines for transcriptomic and network studies
Given the promise of molecular systems and integra-
tive network approaches, it is perhaps surprising that 
there are few universally agreed on metrics, power 
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analysis tools or methodological comparisons to guide 
experimental design, execution and analysis, such as 
there are for genetic association studies172. For DGE and 
network analysis, there are many studies with guide-
lines that are based on theoretical models and empiri-
cal assessments40,173–176, but most studies use data from 
experiments that do not have the spatial, temporal or 
disease-relevant complexities that occur in studies of the 
CNS or post-mortem tissue. There is no experimental 
design that suits all aims, but we suggest criteria for ini-
tial experimental design, ensuring reproducibility and 
improving biological interpretability for transcriptomic 
analyses in BOX 3.

In general, it is helpful to think of all variation in gene 
expression or other molecular profiling data as a con-
sequence of technical, biological and unmeasured fac-
tors177, rather than assuming that differences are due to 
experimental interventions or disease status41. Optimal 
methodological choices and study designs ensure that 
the biological signals from the main factors are not con-
founded by variation from unwanted factors178. Notably, 
molecular profiles in post-mortem gene expression stud-
ies are affected by RNA degradation and post-mortem 
intervals179, but other technical factors including library 
preparation and sequencing depth in RNA-seq analysis 
should also be carefully evaluated180,181. 

Additionally, we note two important points about 
studies that construct predictive models and studies 
that make causal claims. For studies that develop pre-
dictive models, such as disease classifiers, experimental 
design should include the estimation of a model on ini-
tial data followed by evaluation of accuracy in held out 
or, preferably, independent data182. As far as causality is 
concerned, most molecular profiling studies, especially 
those using post-mortem tissue, cannot show causality 
without follow-up controlled experiments or genetic evi-
dence169–171. We also strongly suggest the experimental 
validation of key network predictions, as this provides 
avenues for refinement and biological grounding of the 
network30,32,153,170.

Gene set enrichment with networks. As shown by mul-
tiple studies, gene network analyses can aid in under-
standing genetic association studies. Grouping genetic 
findings using disease- and tissue-relevant modules 
can increase the power to detect genetic associations 
with disease by combining signals that reflect similar 
underlying biology while simultaneously informing bio-
logical mechanism by functionally annotating genetic 
findings30,109,122,183. Enrichment for genetic variants in a 
module can be evaluated using gene set enrichment meth-
ods, which rely on comparing enrichment in a module 
relative to a control gene set. However, studies have 
demonstrated biases in gene length, gene mutability and 
other factors that can drive gene set enrichment instead 
of a true biological signal. For example, longer genes are 
more likely to be implicated by CNVs and SNVs87,184,185, 
and genes highly expressed in the brain, particularly 
those involved in synaptic function, are longer on aver-
age than other genes186. These biases inflate enrichment 
results and can result in false positives, so it is important 

to identify appropriate control sets or to apply the cor-
rect statistical methods (permutation tests or covariate 
modelling187). We note that each of the points discussed 
here and in BOX 3 is applicable to many other types of 
high-throughput data and that there are many valid  
variations to FIG. 2a.

Future directions
In this Review, we have discussed how transcriptomic 
and integrative network approaches have been applied 
to provide a systems-level understanding of CNS disor-
ders in an unbiased and reproducible manner. Mapping 
genetic variants to gene expression and PPI networks 
has been fruitful, but most disease-associated varia-
tion in complex diseases lies in the noncoding regula-
tory regions of the genome188. The next crucial step for 
high-throughput molecular studies in the brain will be 
to understand regulatory alterations and interactions 
during development with histone mark profiling and 
chromosome conformation capture approaches189,190. 
Additionally, understanding transcriptomic and epige-
netic changes in more homogeneous cellular popula-
tions, or at a single-cell resolution, will greatly improve 
our mechanistic understanding of normal human brain 
development. Initial maps of these neurobiologically 
relevant epigenetic landscapes and cell type differences, 
mostly at the tissue level, are under construction by the 
PsychENCODE consortium.

As noted throughout this Review, studies of prot-
eomic data are highly complementary to co‑expression 
data and have revealed a crucial level of organization and 
regulation at the translational and post-translational lev-
els. A particularly salient example is the synaptic signal-
ling apparatus, more specifically the postsynaptic density 
(PSD), which has been extensively characterized at the 
protein level in humans and mice, showing key areas 
of overlap and divergence191,192. However, developmen-
tal and cell subtype differences in the PSD are not well 
understood, so obtaining PSD co-expression and PPI 
networks in relevant neural tissue and time points, simi-
lar to what BrainSpan has done for gene expression, will 
be invaluable. Currently, high-throughput, high dynamic 
range spatial and temporal data from minute sample 
quantities with proteomics are not available, so creative 
integration of cell type-specific transcriptional data with 
more generic PPI data may provide an approximation of 
the regional or cellular differences in synaptic structure 
in the near future. The development of methods, includ-
ing benchmarking and refining methods for the integra-
tion of different forms of data (for example, PPI and gene 
expression data), developing tools for exploring network 
structure at a more fine-grained level, and empiri-
cally defining the most sensitive and robust network  
approaches, will also be crucial.

One of the greatest challenges is to systematically 
infer causality in molecular networks with a systems 
genetics approach168,169. This will necessitate more com-
prehensive eQTL studies, particularly in early brain 
development and disease170. Core molecular pathways 
that are confirmed to be perturbed in disease can then 
be interrogated with drug or environment perturbation 

Gene set enrichment
An analysis approach that 
assesses the statistical 
significance of the overlap 
between two gene sets; one set 
is usually an annotated 
reference set, and the other is 
an unannotated set of interest.
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Figure 3 | Transcriptomic convergence and divergence across central nervous 
system disorders.  Transcriptomics can systematically compare genes and pathways 
across neurobiological disorders. To provide a simple example, we compare 
genome-wide expression patterns in the cerebral cortex across published microarray 
studies of autism spectrum disorder (ASD)30, schizophrenia (SCZ)225 and Alzheimer 
disease (AD)226 (part a). We applied differential gene expression (DGE) analysis across 
these disorders in a pairwise manner and performed a meta-analysis with weighted gene 
co-expression network analysis (WGCNA). Please see Supplementary information S1 
(box) for details. The bottom-left half of the comparisons shows pairwise comparison of 
DGE across conditions. ASD–SCZ and ASD–AD are significantly correlated in DGE 
changes, as demonstrated by Spearman correlations (ρ values) between genome-wide 
DGE effect sizes in each disorder. On the upper-right half of the comparisons, Gene 
Ontology (GO) term enrichment of pairwise shared upregulated and downregulated 
changes demonstrates that upregulated inflammation and downregulated synaptic 
function and oxidative phosphorylation are common to all three disorders. Results are 
shown as enrichment Z scores for pathway enrichment, Z > 2 suggests enrichment227. 
WGCNA across these three conditions identified five modules (labelled with different 
colours) that are perturbed across at least one condition, as demonstrated by differences 
in eigengene expression (*p < 0.05,**p < 0.01,***p < 0.001, two-tailed t‑test) (part b). The 
top ten interconnected (hub) genes in each module with edges reflecting the strength of 
correlation between genes reveals (part c) and GO term enrichment for each module 
(part d). MHC, major histocompatibility complex.

data193,194 to identify interventions that will perturb net-
works from a disease state into a healthy state. This area 
of in silico drug screening based on DGE or network 
modules has barely been explored in the CNS, but it has 
considerable promise193. Additionally, with the advent of 
mandatory electronic medical records, population-level 
studies, including longitudinal data for many simple 
phenotypes, coupled with biobanking, can provide the 
scale needed to more fully understand genetic contribu-
tions to disease risk as well as disease relationships across 
the lifespan195–197.

Even once we have the information from thousands 
of genomes, biological insights into the CNS require 
the assessment of relevant behavioural and cogni-
tive phenotypes, which are not well defined for most 

neuropsychiatric diseases198,199 and are rarely collected 
in large populations. Genome-wide transcriptomic 
approaches provide a quantitative endophenotype, or 
a biomarker, that genetic association studies can use 
to further refine the measurement of disease states. 
Transcriptomic and other molecular systems meas-
urements can also be correlated with systems neuro-
science phenotypes, such as MRI and functional MRI 
measurements, or behavioural phenotypes to identify  
non-invasive indicators of disease state4 (FIG. 1a).

Conclusions
Currently, much basic and translational neurosci-
ence research is still focused on candidate genes and 
candidate hypotheses, so sceptics may question the 
value of measuring entire systems. However, biologi-
cal complexity cannot be ignored; genome-wide meas-
urements, in conjunction with studying individual 
genes and pathways, are essential to address the true 
underlying mechanisms of neurodevelopmental and 
neurodegenerative disorders. Well-designed, repro-
ducible molecular profiling studies allow biologists 
to simultaneously evaluate hypotheses in an unbiased 
manner and to generate new hypotheses. Although 
certainly vast and seemingly complex, gene networks 
provide an organizational framework that simplifies 
the process of hypothesis generation and testing. The 
general paradigm of using correlational and physical 
interaction molecular networks in neurobiology to 
understand molecular systems changes can be applied 
across methodologies and enables the investigation 
of relationships that span multiple levels of analysis. 
The results of high-quality genome-wide studies will 
be essential to develop and test hypotheses that look 
beyond where our current knowledge ends to develop 
a more encompassing view of the problems posed by 
neurodevelopmental and neurodegenerative disorders, 
and their potential solutions.
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