
DERIVA GENÉTICA 

 

 Seja uma população de tamanho finito N, constante ao longo das gerações; 
sejam ainda p

0
 e q

0
 as freqüências dos alelos A e a de um loco autossômico na geração 

0; como o tamanho da população é constante, a geração 1 é formada da união de 2N 
gametas ao acaso dentre os indivíduos da geração 0: 
 
 

                  (p0+q0)
2N; 

 

q1 pode tomar, portanto, qualquer um dos (2N+1) valores seguintes: 
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 A probabilidade de que q tome o valor particular qj = j/2N é 
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 (combinação de 2N elementos j a j) 

 Seja o seguinte exemplo: N = 2, 2N = 4 genes; p0 = q0 = 1/2 

 
 f(A) = p = 1    3/4    1/2    1/4    0 
 f(a) = q = 0    1/4    1/2    3/4    1 
estado  j = 0     1      2      3     4 
 
 As probabilidades de que a população 1 esteja nos estados j = 0, 1, 2, 3 ou 
4 são, respectivamente, 
 

    0: (1/2)4 = 1/16 

    1: 4(1/2)3(1/2) = 1/4 

    2: 6(1/2)2(1/2)2 = 3/8 

    3: 4(1/2)(1/2)3 = 1/4 

    4: (1/2)4 = 1/16 
 
o que define o vetor da linha 
 
    Q(1) = (1/16 1/4 3/8 1/4 1/16). 
 
 Se a população 1 estiver no estado j = 0 (p1 = 1, q1 = 0), o que ocorre com 

uma probabilidade de 1/16, as probabilidades de que a população 2 esteja nos estados j 
= 0, 1, 2, 3, 4 são, respectivamente, 
 
    0: 1 
    1: 0 
    2: 0 
    3: 0 
    4: 0. 



 Se a população 1 estiver no estado j=1 (p1 = 3/4, q1 = 1/4), o que ocorre 

com uma probabilidade de 1/4, as probabilidades de que a população 2 esteja nos 
estados j = 0, 1, 2, 3, 4 são, respectivamente, 
 

    0: (3/4)4 = 81/256 

    1: 4(3/4)3(1/4) = 27/64 

    2: 6(3/4)2(1/4)2 = 27/128 

    3: 4(3/4)(1/4)3 = 3/64 

    4: (1/4)4 = 1/256. 
 
 Se a população 1 estiver no estado j=2 (p1 = q1 = 1/2), o que ocorre com uma 

probabilidade de 3/8, as probabilidades de que a população 2 esteja nos estados j=0, 
1, 2, 3, 4 são respectivamente, 
 

    0: (1/2)4 = 1/16 

    1: 4(1/2)3(1/2) = 1/4 

    2: 6(1/2)2(1/2)2 = 3/8 

    3: 4(1/2)(1/2)3 = 1/4 

    4: (1/2)4 = 1/16. 
 
 Se a população 1 estiver no estado j=3 (p1 = 1/4, q1 = 3/4), o que ocorre 

com uma probabilidade de 1/4, as probabilidades de que a população 2 esteja nos 
estados j = 0, 1, 2, 3, 4 são, respectivamente, 
 

    0: (1/4)4 = 1/256 

    1: 4(1/4)3(3/4) = 3/64 

    2: 6(1/4)2(3/4)2 = 27/128 

    3: 4(1/4)(3/4)3 = 27/64 

    4; (3/4)4 = 81/256. 
 
 Se a população 1 estiver no estado j=4 (p1 = 0, q1 = 1), o que ocorre com 

uma probabilidade de 1/16, as probabilidades de que a população 2 esteja nos estados 
j=0, 1, 2, 3, 4 são, respectivamente, 
 
    0: 0 
    1: 0 
    2: 0 
    3: 0 
    4: 1. 
 



 Logo, as probabilidades de que a população 2 esteja nos estados j = 0, 1, 2, 
3, 4 são, respectivamente, 
 
0: 1/16 x 1 + 1/4 x 81/256 + 3/8 x 1/16 + 1/4 x 1/256 + 1/16  
   x 0 = 85/512 = 0,166016 
 
1: 1/16 x 0 + 1/4 x 27/64 + 3/8 x 1/4 + 1/4 x 3/64 + 1/16  
   x 0 = 27/128 = 0,210938 
 
2: 1/16 x 0 + 1/4 x 27/128 + 3/8 x 3/8 + 1/4 x 27/128 + 1/16  
   x 0 = 63/256 = 0,246094 
 
3: 1/16 x 0 + 1/4 x 3/64 + 3/8 x 1/4 + 1/4 x 27/64 + 1/16  
   x 0 = 27/128 = 0,210938 
 
4: 1/16 x 0 + 1/4 x 1/256 + 3/8 x 1/16 + 1/4 x 81/256 + 1/16  
   x 1 = 85/512 = 0,166016 
 
o que define o vetor de linha 
 
 Q(2) = (85/512  27/128  63/256  27/128  85/512). 
 
 Sob forma matricial, as operações podem ser reescritas como 
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ou, abreviadamente, Q(1).T = Q(2), em que T é uma matriz transicional de 
probabilidades condicionais (matrizes desse tipo caracterizam-se por suas linhas 
somarem 1). 
 Generalizando, Q(n).T = Q(n+1). 
 
 O que foi visto foi a análise de um processo em que, dadas as condições de 
uma determinada população (tamanho e freqüência), podemos determinar as probabilidades 
da população estar na mesma condição (freqüências gênicas iguais) ou em condições 
diferentes. Como a deriva genética é um processo de amostragem casual, não podemos 
prever o que pode acontecer com a freqüência gênica de uma determinada população 
pequena.  
 O que pode ser feito, no entanto, é estudar o comportamento de um número 
muito grande de populações com mesmo tamanho, em que podemos esperar que algumas 
aumentem as freqüências gênicas, outras diminuam e outras permaneçam com freqüências 
gênica iguais.  
 A teoria da Estatística nos fornece meios de prever a dispersão das 
freqüências gênicas em muitas populações. Para isso, usamos a medida da variância, na 
enésima geração, em um grupo de populações que na geração 0 têm as mesmas freqüências 
gênicas. A previsão da variância no decorrer das gerações exige conhecimentos 
avançados de Estatística, mas está representada abaixo apenas para ilustração: 
 



Na geração 0, não há variação, todas as freqüências são idênticas, portanto: 
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Na primeira geração (da distribuição binomial): 
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A média das freqüências é igual a esperança: 
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e a variância: 
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A proporção de heterozigotos esperada na geração 1 é: 
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como a proporção de heterozigotos de uma geração é a multiplicação da quantidade de 
heterozigotos da geração seguinte por uma constante, na n-ésima geração: 
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A variância na n-ésima geração: 
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Colocando o termo 

! 

E(qn
2
) em termos de hn(que já conhecemos) e q0: 
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 O limite de 

! 
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n

2
 quando n tende a infinito é q

0
(1-q

0
). 

 A Tabela abaixo mostra, para um número infinito de populações compostas, 
cada uma, por N = 2 indivíduos com p

0
 = q

0
 = 1/2 na geração inicial, os valores das 

probabilidades dos estados j = 0, 1, 2, 3, 4 e da variância 

! 
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n

2
, calculados segundo os 

métodos mostrados anteriormente. 
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geração       
0 0,000000 0,000000 1,000000 0,000000 0,000000 0,000000 

1 0,062500 0,250000 0,375000 0,250000 0,062500 0,062500 

2 0,166016 0,210938 0,246094 0,210938 0,166016 0,109375 

3 0,248962 0,160400 0,181274 0,160400 0,248962 0,144531 

4 0,311670 0,120506 0,135647 0,120506 0,311670 0,170898 

5 0,358748 0,090399 0,101706 0,090399 0,358748 0,190674 

10 0,466480 0,021453 0,024124 0,021453 0,466480 0,235922 

15 0,492046 0,005091 0,005727 0,005091 0,492046 0,246659 

20 0,498112 0,001208 0,001359 0,001208 0,498112 0,249207 

25 0,499552 0,000287 0,000323 0,000287 0,499552 0,249812 

∞ 0,500000 0,000000 0,000000 0,000000 0,500000 0,250000 

 
 

 


