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ABSTRACT

The primary effect of the response of plants to rising atmospherj(Cgis to
increase resource use efficiency. Elevatgogduces stomatal conductance and
transpiration and improves water use efficiency, and at the same time it stimu-
lates higher rates of photosynthesis and increases light-use efficiency. Acclima-
tion of photosynthesis during long-term exposure to elevajgddices key en-
zymes of the photosynthetic carbon reduction cycle, and this increases nutrient
use efficiency. Improved soil-water balance, increased carbon uptake in the
shade, greater carbon to nitrogen ratio, and reduced nutrient quality for insect
and animal grazers are all possibilities that have been observed in field studies of
the effects of elevatedLThese effects have major consequences for agriculture
and native ecosystems in aworld of rising atmosphegar@ climate change.
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INTRODUCTION!

Several lines of evidence suggest that terrestrial ecosystems are responding to
rising atmospheric carbon dioxide £C(39, 80, 116). The terrestrial bio-
sphere responds to this increase solely through the response of plants. Photo-
synthesis (133) and transpiration (95) have long been known to be sensitive
to increase in g and it is now evident that respiration will also be affected
(85). These three processes appear to be the only mechanisms by which
plants and ecosystems can sense and respond directly to rigingnGer-
standing how these processes are affected by increasgigntiierefore fun-
damental to any sound prediction of future response of both natural and agri-
cultural systems to human beings’ influence on the composition of the atmos-
phere and on the climate system.

Many detailed and thorough reviews identify the long list of changes at
the whole plant level to rising Je.g. 21, 26, 72, 81), but few focus on these
initial steps in perceiving rising £ Influential ecological discussions appear
sometimes to have ignored a physiological understanding. A common view is
that the impact of rising g£through stimulation of photosynthesis will be
short-lived because other factors, particularly nitrogen, will be limiting in
most ecosystems (21, 146, 197). Yet this view may ignore evidence from
physiology that elevated&llows increased efficiency of nitrogen use. Thus
the key effect is not removal of a limitation but increase in efficiency. An
analysis of the available evidence shows that relative stimulations of plants
grown with low N averaged across several studies appear just as large as
those for plants grown with high N (130).

In this review, current understanding of the effects gfo@ transpiration,
photosynthesis, and respiration are examined to help explain why riging C

1

Abbreviations: A, photosynthetic G@ssimilation; Aa light-saturated C@assimilation; G,
atmospheric C@concentration; ¢ intercellular CQ concentration; Cyt, cytochrome pathway;
Cytox, cytochrome-c-oxidase; ET, evapotranspiration; FACE, free-air carbon enrichmeib:-g
matal conductance; HXK, hexokinase; KCN, potassium cyanide; LAI, leaf area index; LCP, light
compensation point; LhcB, light-harvesting subunit; LUE, light-use efficiency; N, nitrogen; NEP,
net ecosystem production; NUE, nitrogen use efficiency; Pa, pascal; PCO, photosynthetic carbon
oxidation pathway;RbcS,Rubisco subunit gene; RH, relative humidity; RubP, Ribulose-1,5-
bisphosphate; Rubisco, Ribulose-1,5-bisphosphate carboxylase/oxygenase; SDH succinate dehy-
drogenase; SHAM, salicylhydroxamic acid;, ubisco specificity; T, transpiration;of, tem-
perature optimum; TNC, total nonstructural carbohydrate; WUE, water use efficiéficy;
photosynthetic light-use efficiency.
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will increase resource-use efficiency and the implications of this increased
efficiency. Each topic is introduced with a description of the mechanism by
which elevated ghas its effect, followed by a discussion of acclimation of
the process to elevated,CAcclimation is defined as those physiological
changes that occur when plants are grown in elevatgd\@ have summa-
rized the most relevant literature to indicate the intensity of the responses for
key aspects of each of the three processes we discuss. Cugrsragproxi-
mately 36 Pascals (Pa), although in many studies in our survey of the litera-
ture Gy was lower than this by as much as 1.5 Pa. Elevatgdf@he studies

we reviewed varied considerably, from 55 Pa in the case of the Free Air Car-
bon Enrichment (FACE) studies to upward of 100 Pa in a few controlled en-
vironment studies. In most studies, however, the elevatgedds approxi-
mately 70 Pa, a concentration that is expected sometime during the twenty-
first century.

STOMATA

In contrast with the effects of fon photosynthetic C&assimilation (A) and
respiration, which are mediated by specific molecular targets, the mechanism
by which stomata respond to,Cemains unclear (152), although it appears
most probable that it is linked to malate synthesis, which is known to regulate
anion channels in the guard cell plasma membrane (96). Stomata of most spe-
cies close with increase ing@s well as decrease in A and relative humidity
(RH). For 41 observations covering 28 species, the average reduction of sto-
matal conductance was 20% (Table 1; see also 74). A recent analysis of re-
sponses in tree seedlings shows that the responses are highly variable, and in
some species there is no response to elevaidd@). It is not clear, however,
whether failure to respond to elevateg i€ due to a genetic trait or to accli-
mation of stomata to high humidity. For example, stomatXafithium stru-
mariumgrown in a greenhouse in high humidity failed to respond to elevated
Ca until given a cycle of chilling stress (62). Reduction of stomatal aperture
and conductance {gexplains the reduction in leaf transpiration observed in
plants grown in elevated {J151). But does reduced; in elevated G limit
photosynthesis in plants adapted to hig{?C

Stomatal Limitation of Photosynthesis

Two approaches to making a determination of the limitation of photosynthe-
sis by g, have been applied (193), and both are based on analysis of the de-
pendence of A on the intercellular G@oncentration (g, the A/G curve. In
plants grown in the present atmosphergis@enerally maintained at 0.7,C
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even when Gis varied. In many plants, the value of A at the operationasC
commonly about 90% of what it would be without the epidermis as a barrier
to water loss and C@diffusion into the intercellular spaces (i.e. A at i€
about 0.9A at @). Here we use {IC, as an index of the limitation of photo-
synthesis. If @C, in elevated G is less than €C, in normal ambient g

then the gwould have decreased to be more of a limitation to A in elevated
than in normal ambient £1n the literature we examined, mean and range of
C;/C, were nearly identical for both normal ambient and elevatgdj©wn
plants in 26 species and 33 observations (Table 1). In six field studig®, C
was also very close to 0.7 for both treatments (0.73, 0.74 for normal ambient
and elevated g}. Thus, although the stomatal conductance is reduced in ele-
vated G, this by itself does not limit photosynthesis. Similarly, reducegetg

the leaf level does not necessarily mean that stand transpiration will be lower
because there could be a compensatory increase in leaf area index (LAI). But
does failure to limit photosynthesis mean that stomata do not acclimate to
elevated @?

Acclimation of gto Elevated G.

Because stomatal conductance is mediated by changes in photosynthesis,
lower conductance in plants having a reduced photosynthetic capacity is to be
expected. There is some evidence that growth in highlters the gain in the
feedback loop for regulation of stomatal conductance (195). However, apart

Table 1 The effect of growth in elevated,©n acclimation of stomatal conductanceg),(g
transpiration (T), the ratio of intercellular to ambient @0ncentration (C,), and leaf area
index (LAI) (field grown species only); and the numbers of species (Sp) and studies (n).

Attribute R Sp, n References

Os 0.80P¢ 28,41 38, 43, 48, 66, 88, 89, 92, 107, 111, 140, 149, 160,
162, 181, 191, 192, 210, 217, 232, 241, 243

T 0.7% 35, 80 2,3, 13, 35, 43, 55, 67, 76, 92, 105, 112, 113, 128,
160, 186, 188, 189, 191, 192, 203, 216, 234, 235

CilC, 0.99 26, 33 15, 19, 20, 43, 48, 73, 88, 89, 107, 108, 140, 149,
160, 162, 170, 181, 191, 192, 210, 241, 243, 248,
249

LAI 1.03 8,12 13, 92, 142, 165, 173, 187

aRisthe mean of n observations in various species (Sp) of the ratio of the attribute in plants grown in
elevated to that for plants grown in current ambiept C

b Means statistically different from 1.9 € 0.01) by Student'stest.

®Means statistically different from 1.9 € 0.01) by Mann-Whitney rank sum test for data that failed
normality test.
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from a single paper (195), there is little evidence that stomata acclimate to
elevated Gindependently of acclimation of photosynthesis (65, 133, 193).

ACCLIMATION OF STOMATAL NUMBERS TO ELEVATED C; An acclimatory de-
crease in stomatal numbers appears a common but not universal response to
growth at elevated £ In the absence of variation in stomatal dimensions, sto-
matal density will determine the maximurgthat a unit area of leaf could attain.

One expectation at increaseg i€ that fewer stomata are required because the
rate of CQ diffusion into the leaf will be a decreasing limitation to photosynthe-

sis as Grises. Reported changes in stomatal density with growth at elevgted C
include increases, decreases, and no change (90, 133). Long-term studies draw-
ing on herbarium material and paleoecological evidence appear more conclu-
sive, showing an inverse relation between variation jpa@d variation in
stomatal numbers (22, 23, 239). However, in a detailed study of variation in sto-
matal density within leaves from a single tree, Poole et al (175) showed that
variation within asingle tree is of the order found in herbarium specimens cover-
ing a 200-year period and previously attributed to the changg.ift@@ authors
further demonstrate that uncertainties in the environment from which palaeobo-
tanical specimens have been sampled could explain the variation attributed to
past variation in

RISING Cy AND EVAPOTRANSPIRATION  Will reduced leaf transpiration by ele-
vated G also lead to reduced stand evapotranspiration (ET)? Whether elevated
Careduces ET depends on the effects of elevatgoiQeaf area index (LAI) as

well as on @ No savings in water can be expected in canopies where elevgted C
stimulates increase in LAl relatively more than it decreasesigwever, our
survey shows that LAl did not increase in any of the long-term field studies of
the effects of elevated{on crops or native species (Table 1). This survey in-
cluded studies of wheaT (iticum aestivurpand cotton in Arizona where FACE

was used to expose the plants to 55 Pa (173) as well as open top chamber studies
of native species. Elevated,-68 Pa) reduced ET compared with normal am-
bientin all the native species including the Maryland wetland (13), Kansas prai-
rie (92), and the California grassland ecosystem (74). In the wetland ecosystem,
ET was evaluated for agdominated and a &Zdominated plant community
(13). In these two communities, instantaneous values of ET averaged 5.5-6.5
forthe Ggand 7.5-8.7 mmol bD m™2s™1 for the G communities at present am-
bient G, but at elevated £(68 Pa), ET was reduced 17-22% in thg &hd
28-29% in the @gcommunity, indicating the relatively greater effect of elevated
Caonginthe G species. Inthe prairie ecosystem, cumulative ET over a 34-day
period in midsummer was 180 kg @ at present ambientfCwhereas it was
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20% less at elevated@n the grassland ecosystem, elevatgdegduced ET suf-
ficiently that the availability of soil water was increased (74). A four-year study
of the responses of native Australian grass to elevaj@u&phytotron reported
higher water content of soils (138).

STOMATAL CONDUCTANCE AND THE ENERGY BUDGET Reduced transpiration
alters partitioning of energy between latent heat loss and convective exchange,
potentially increasing leaf temperature (63). Elevatingd®5 Pa consistently
decreasedgpand increased canopy temperature of cotton alf@u{173).

SUMMARY Reduced stomatal conductance is expected to be a feature of plants
exposed to ever increasing,GStomata do not appear to limit photosynthesis
with elevation of Gany more than they do at normal ambiegi&en though g

is usually decreased. A pattern of decreasgebgpled with maintenance of a
constant @C, will mean that water use efficiency will rise substantially, and
there is evidence that this means increased yield for crops with no additional
penalty in water consumption. Elevateg @es not stimulate increased leaf
area index in field studies with both crops and native species. Thus, reduced g
leads to reduced ET and increased soil water content. However, reduced ET also
causes increased warming of the plant canopy and surrounding air. Evidence for
acclimation of stomatal development to elevatgds@onflicting, though there

is good evidence for a response gtgthe acclimation of photosynthesis. The
following section examines this acclimation.

PHOTOSYNTHESIS

The evidence that elevated, Gtimulates increased photosynthesis is over-
whelming. In our survey of 60 experiments, growth in elevatgdnCreased
photosynthesis 58% compared with the rate for plants grown in normal ambi-
ent G, (Table 2). Acclimation of photosynthesis to elevategldlzarly re-
duces photosynthetic capacity but rarely enough to completely compensate
for the stimulation of the rate by high,CThis section of the paper reviews

the mechanism for the fundamental effects gfo@ photosynthesis and what

is known about acclimation to risingsC

Direct Effects of Rising £on Photosynthesis

Carbon dioxide has the potential to regulate at a number of points within the
photosynthetic apparatus, including binding of Mn on the donor side of pho-
tosystem Il (119), the quinone binding site on the acceptor side of photosys-
tem Il (86), and the activation of Ribulose-1,5-bisphosphate carboxy-
lase/oxygenase (Rubisco) (178). While all these processes show a high affin-
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Table 2 Acclimation of photosynthesis to elevategdetermined as the ratio (R) of the value
of the attribute for plants grown in elevated to that in normal ambigfR)&

Attribute R Sp,n References
A at growth G
Large rv 1.58 45, 59 15, 34, 37, 55, 89, 92, 107, 108, 141, 144, 170, 180,
187, 203, 207, 213-215, 219, 224, 241, 247, 248
Small rv 1.28 28, 103 12,19, 20, 29, 31, 38, 41, 43, 48, 53, 54, 56, 64, 66,

68, 71, 77, 79, 88, 98, 101, 110, 111, 115, 125, 140,
141, 149, 159, 162, 168, 181, 191, 192, 194, 196,
202, 205, 210, 221, 226, 234, 235, 238, 240, 243

High N supply  1.5% 8,10 12, 49, 55, 111, 160, 214, 234, 235
Low N supply 1.28 8,10 12, 49, 55, 111, 160, 214, 234, 235
A, C,y<35
0.93 28,33 15, 34, 37, 4908, 180, 203, 207, 213, 224, 248, 249
Large rv
Small rv 0.80 18, 53 19, 20, 29, 38, 43, 48, 54, 56, 68, 71, 79, 88, 97,

110, 111, 115, 125, 140, 149, 162, 191, 192, 194,
202, 210, 221, 226, 234, 235, 238

High N supply  0.89 4,6 49,111, 234, 235
Low N supply  0.62 4,6 49,111, 234, 235
Starch 2.62 21,77 1,7, 20, 24, 36, 49, 50, 54, 68, 93, 94, 98, 103, 108,

115, 139-141, 144, 155, 156, 170, 171, 177, 196,
203, 210, 215, 221, 228, 235, 243, 244

Sucrose 1.60 9, 38 1,7, 24,50, 68, 82, 93, 94, 98, 103, 104, 139, 141,
144, 156, 169, 177, 203, 221, 229, 243

Protein 0.88 11,15 7,34, 37, 56, 93, 94, 108, 200, 202-204, 220, 229

[Rubisco] 0.88 11,8 4-6, 34, 56, 108, 187, 194, 200, 202, 215, 220

Rubisco activity 0.76 11,13 4-7, 34, 37, 56, 93, 94, 97, 106, 108, 124, 125, 140,
144, 169, 187, 194, 200, 202, 203, 214, 215, 226,
228, 234, 237, 243

Leaf [N]
High N supply 0.88 8, 10 12, 42, 49, 58, 138, 143, 170, 172, 234

Low N supply 0.8% 22,39 12, 40, 42, 48, 49, 58, 99, 138, 140, 143, 149, 150,
160, 170, 172, 182, 187, 190-192, 215, 224, 233,
234
aRooting volume (rv) is either large (>10 L) or small (<10 L). Other details as in Table 1.

bcsee table 1.

ity for HCO3™ or CO, and are saturated at the current Rubisco has a low
affinity for CO, on carboxylation, and this reaction is not saturated at the cur-
rent G, Therefore, the carboxylation of Rubisco will respond to rising C
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The kinetic properties of Rubisco appear to explain the short- and many of
the long-term responses of photosynthesis to this change in the atmosphere.
Rising G, increases the net rate of GOptake for two reasons. First, Rubisco
is not CO-saturated at the current;CSecond, Rubisco catalyzes the oxy-
genation of Ribulose-1,5-bisphosphate (RubP), a reaction that is competi-
tively inhibited by CGQ (18). Oxygenation of RubP is the first step of the
photosynthetic carbon oxidation or photorespiratory pathway (PCO), which
decreases the net efficiency of photosynthesis by 20-50%, depending on
temperature (245), by utilizing light energy and by releasing recently assimi-
lated carbon as CCO;, is a competitive inhibitor of the oxygenation reac-
tion, such that a doubling of concentration at Rubisco will roughly halve the
rate of oxygenation (131). This second effect on the PCO may be of greater
importance, because an increase in net photosynthesis will result regardless
of whether photosynthesis is Rubisco- or RubP-limited and regardless of
where metabolic control lies. The increase in uptake resulting from suppres-
sion of the PCO requires no additional light, water, or nitrogen, making the
leaf more efficient with respect to each.

RUBISCO SPECIFICITY Rubisco specificity (8 is the ratio of carboxylation to
oxygenation activity when the concentrations of £&hd G at Rubisco are
equal. It determines directly the increase in efficiency of photosynthesis with
rising G This value is therefore of fundamental importance in predicting the di-
rect responses of plants to rising. & has been suggested to vary from 88-131
across a range of{plants, with an average of about 100 (18). Terrestrial C
plants show both the highest and a fairly constaint Sontrast with other photo-
synthetic groups such ag @lants and cyanophyta (26, 52, 225).

ELEVATED C4 AND TEMPERATURE As temperature increases,dclines dra-
matically for two reasons: decreased solubility of O®lative to @ and de-
creased affinity of Rubisco for COrelative to Q (133). About 68% of the
decline in $is calculated to result from the binding affinity of the protein for
CO, (27, 131). The effect of this decline in ®ith temperature is to produce a
progressive increase in the stimulation of photosynthesis by elevatedtiC
temperature. The minimum stimulation of RuBP-limited photosynthesis by in-
creasing Gfrom 35to 70 Parises from 4% at XD to 35% at 30C. It also fol-

lows from this interaction that the temperature optimugpiof light-saturated
CO, assimilation (Ag) must increase with £by 2, 5, and 6C with increase in
Cato 45, 55, and 65 Pa, respectively (137). The upper temperature at which a
positive Azt may be maintained is similarly increased. The change in these
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characteristic temperatures underlies the importance of considering rige in C
notjust as afactor thatincreases photosynthetic rate, but also as one that strongly
modifies the response to temperature. Because increagisgdicted to in-
crease leaf temperature, both directly by decreasing latent heat loss and indi-
rectly through radiative forcing of the atmosphere, this interactive effect gf CO
and temperature has profound importance to future photosynthesis. It also sug-
gests a much greater stimulation of photosynthesis in hot versus cold climates
(118, 135, 136).

Acclimation of Photosynthesis to Elevated C

There is abundant evidence that in the long term, photosynthesis acclimates
to elevated G i.e. the photosynthetic properties of leaves developed at ele-
vated G differ from those developed at the current(@6, 90, 133, 230). The
vast majority of studies in our and others’ surveys show a decrease in A of
plants grown in elevated £relative to controls grown at normal ambient,
when both are measured at the current ambigr{ff@ble 2; see also 90, 136,
193). Acclimation of photosynthesis is accompanied by higher carbohydrate
concentration, lower concentration of soluble proteins and Rubisco, and inhi-
bition of photosynthetic capacity. When there is no rooting-volume limita-
tion, as for example in our survey when the rooting volume exceeded 10L,
significant reduction in A caused by growth in elevategli€the exception
rather than the rule (Table 2, A at;& 35 Pa) while, exceptionally, an in-
crease in photosynthetic capacity is observed (15, 91).

Two reasons for this acclimation are apparent. First, the plant may be un-
able to use all the additional carbohydrate that photosynthesis in elevated C
can provide; therefore a decrease in source activity must result. Second, less
Rubisco is required at elevated.©ur survey shows an average reduction in
the amount of Rubisco of 15% in eight studies including 11 species and a re-
duction in Rubisco activity of about 24% (Table 2). As a protein that can con-
stitute 25% of leaf N, these reductions are a major component of the lower
tissue N observed in foliage (15-19%) (Table 2).

SOURCEI/SINK BALANCE Arp (14) drew attention to the strong correlation be-
tween rooting volume and acclimation of photosynthesis of plants in elevated
Ca Insmall pots (i.e. <10 L), A of plants in elevategWas less than A of plants

in normal ambient & In Table 2 we separate the effects of elevatgdriphoto-
synthesis into the effects of small and large rooting volumes. In our survey of
163 studies, the stimulation of A was about 50% for large rooting volumes and
field experiments but reduced by about half of this when the rooting volume is
limited (Table 2). When there is no restriction of rooting volumgzfemains
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the same for plants grown in both elevated and ambigrithilar conclusions
are reported for tree seedlings (46). The effect of rooting volume on acclimation
is probably confounded with effects of nutrient availability on photosynthesis.

NITROGEN-LIMITATION  Other factors, such as available nutrients, also reduce
the sink strength. In a small number of studies, reducing the available N had an
effect on A that was the same as the effect of limiting the rooting volume: At
high N, the stimulation of A by elevated,@as about 50%, but this stimulation
dropped to about 25% when available N was low. Acclimation of photosynthe-
sis to elevated ghas frequently been suggested to be more marked when N sup-
ply is limiting (26, 46). Rubisco and large subunit Rubisco RNRDb¢S)
expression iPisum sativunandTriticum aestivunwere unaffected by growth

in elevated Gwhen N supply was abundant but showed marked decreases in re-
sponse to elevated,@hen N was deficient (158, 185).

For plants such as wheat and pea, which are able to rapidly form addi-
tional sinks during early vegetative growth, sink limitation is unlikely,
whereas other requirements are not limiting. However, growth of additional
sinks would be limited if N supply is limiting. Because less Rubisco is re-
quired under elevatedCthis redistribution of N would greatly increase the
efficiency of N use.

Although acclimation in many early experiments was exaggerated by the
artifact of rooting restriction, there is also clear evidence that acclimation can
occur in the absence of any rooting restriction (46). In the Maryland wetland
ecosystem where open top chambers have been used to study the effects of
elevated G (68 Pa), Rubisco was reduced 30-58%, and photosynthetic ca-
pacity, measured at normal ambieng, @as reduced 45-53% in the sedge
(Scirpus olneyi after seven years of exposure (108). Wheat grown with an
adequate supply of N and water showed no acclimation of photosynthesis to
C, elevated to 55 Pa in FACE until completion of flag leaf development
when there was a significant loss of Rubisco followed by other photosyn-
thetic proteins, relative to controls (157).

HOW MUCH RUBISCO IS REQUIRED IN HIGH @?  Rubisco can constitute 25% of
leaf [N] in a G3 leaf (18). Large quantities of this enzyme appear necessary to
support light-saturated photosynthesis in presgii1@0). Calculations suggest
that 35% of the Rubisco could be lost from the leaf before Rubisco will co-limit
photosynthesis when s increased to double the current concentration (133).
Nicotiana tabaccuntransformed with antisend@bcSto produce 13-18% less
Rubisco showed lower rates of carbon gain and growth at the curgegtc@om-
parison with the wild type from which they were derived. There was no differ-
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ence in C gain or growth when both were grown at 80 R1@0), providing
clear evidence of a decreased requirement for Rubisco at eleyated C

Woodrow (238) computed the amount of Rubisco required to maintain
constant A as gincreased from the present level to 100 Pa. At@5the
amount of Rubisco needed drops to 59% of present amount at 70 Pa, to 50%
at 100 Pa (Figure 1). Because of the strong temperature dependencthef S
amount of Rubisco required will also decline strongly with increasing tem-
perature. At 70 Pa and a leaf temperature df@%only 42% of the Rubisco
activity required at 35 Pa would be needed to maintain the same rate of pho-
tosynthesis. There would be a large need for Rubisco at low temperature, and
this requirement changes very little ag ses (Figure 1). At &C, the re-
guirement for Rubisco to maintain the same rate of photosynthesis at elevated
C,is 89% of that needed at normal ambient.

A wide range of studies have reported decreases in Rubisco content and
activity with growth in elevated £ In our survey of 18 studies of 12 species,
Rubisco was reduced 15% (Table 2). Growth in elevatgddnmonly re-
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Figure 1 The proportion of Rubisco required to support the same rate of Rubisco-limited photo-
synthesis at 35 Pa ag i@Bcreases at different leaf temperatures. (After 238.)
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sults in decreased photosynthesis relative to controls when measured at the
current atmospheric £ even though photosynthesis of the elevated grown
leaves remains higher when they are measured at their elevated grgwth C
This could be explained by decreased in vivo Rubisco activity. In our survey
of 13 studies and 11 species (Table 2), we indicate a reduction of Rubisco ac-
tivity of 24%. Studies ofPhaseolus vulgari§194), Pinus taeda(215), and
wheat (134) have shown A{Qesponses that indicate a selective loss of
Rubisco activity in vivo without significant loss of capacity for regeneration

of RuBP with growth at elevatedCA similar conclusion can be drawn from
control analysis applied tHelianthus annuug237).

THE MOLECULAR MECHANISM OF ACCLIMATION  Decrease in Rubisco is com-
monly correlated with an increase in leaf nonstructural carbohydrates. In our
survey we found that sucrose and starch increased 60 and 160% in eleyated C
(Table 2). Regulation of the expression of photosynthetic genes, via increased
soluble carbohydrate concentration, may underlie acclimation to growth in ele-
vated G (Figure 2; 199, 206, 230). Decreased expression of several photosyn-
thetic genes has occurred when sugar concentrations have been increased by
directly feeding mature leaves through the transpiration stream (121, 123, 222),
by expression of yeast-derived invertase in transgenic tobacco plants that directs
the gene productto the cell wall to interrupt export from source leaves (227), and
by cooling the petiole to decrease the rate of phloem transport in intact tobacco
plants (122). Using chimeric genes created by fusing maize photosynthetic gene
promoters with reporter genes, seven promoters including those for the light
harvesting subuni_hcB)andRbcSwere repressed by soluble carbohydrates.
The low concentration of glucose required for this repression suggests that other
sugars, in particular sucrose and fructose, may be effective via metabolisminthe
cell to glucose. How might glucose suppress gene expression in the nucleus?
Based on glucose signaling in yeasts, a hypothetical scheme whereby hexoki-
nase (HXK) associated with a glucose channel or transporter in the plas-
malemma or tonoplast would release an effector in response to glucose has been
proposed (Figure 2; 121, 199). The effector would then interact with the promot-
ers of nuclear genes coding for chloroplast components. This system would al-
low sensing of both an accumulation of sucrose in the vacuole and in the leaf
vascular tissue, indicating an imbalance in sink capacity relative to source activ-
ity. Repression is blocked by the HXK inhibitor mannoheptulose, providing evi-
dence of the role of HXK in this signal transduction pathway (109). Where
carbohydrate repression has been demonstrated it appears to involRbb8th
coding for Rubisco, and genes that will affect capacity for RubP regeneration.
Optimum use of resources would require a system that would allow decrease in
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Figure 2 How rising Ge may support more growth when N is limiting. Elevategl(CO.T) will
stimulate photosynthesis and leaf total nonstructural carbohydrate (TNC) concentration, which in
turn could support more growth of sink tissues. When growth is limited by N, TNC accumulation in
the source leaves will be accentuated by elevategd@@centration. Glucose, as a possible monitor

of leaf TNC, represses expression of specific genes and in particulRbttfgene coding for the

small subunit of Rubisco. Glucose repression of nuclear gene expression is thought to occur via a
hexokinaseKIXK) signal transduction pathway. Decreased synthesis of Rubisco and to a lesser ex-
tent other chloroplast proteins will release a significant portion of the limiting supply of N.

Rubisco, without loss of capacity for RubP regeneration. Nie et al (156) showed
in wheat that elevated {Tan result in decreased expressiorRticSbut not

other Calvin cycle of chloroplast membrane genes. This is consistent with Fig-
ure 2 because several different promoters are involved that could have different
sensitivities to carbohydrate concentrations (199). Is carbohydrate repression
consistent with observations of plants grown in elevatgtiAlthough as a gen-

eral rule Rubisco decreases with growth in elevatg@d@l soluble carbohy-
drates rise, there are important exceptions (156). This suggests that other
possible regulatory elements need to be identified before the mechanisms of ac-
climation can be fully understood.

ACCLIMATION AND CANOPY PHOTOSYNTHESIS Our analysis of photosynthesis
has only concerned the increase in leaf photosynthetic rates that result from
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growth in elevated & If we consider a crop or natural canopy, carbon gain will
only increase with increased leaf photosynthetic rates under elevagiadh@
absence of compensatory decreases in canopy size and architecture. If there is a
compensatory decrease in canopy size, then gain at the leaf level might be offset
by decrease atthe canopy level. In Table 1 we show that for studies carried outin
the field, canopy leaf area is not significantly increased or decreased by long-
term growth in elevated £

Considerable evidence supports the prediction that increase ju@ke
will be greater in warm climates (131, 133, 145). Among the long-term ex-
periments in which plants have grown under elevated foDsuccessive sea-
sons, most obvious is that in arctic tundra no sustained increase in net carbon
gain was observed (163), whereas in warm temperate climates, e.g. the Mary-
land wetland ecosystem, stimulation of €0ptake was observed for eight
successive seasons (60). In two successive FACE experiments on the same
site at Maricopa, Arizona, total daily canopy photosynthesi§&ogsypium
hirsutumin the middle of summer was increased by ca 40% in the canopy
growing in 55 Pa. In wheat growing on the same site in the cooler tempera-
tures of spring, canopy photosynthesis was increased by ca 10% (173). Rela-
tive stimulation of A by a doubled Lin the evergreerPinus taedan the
field was strongly correlated with seasonal variation in temperature (129).

Photosynthesis in the Shade

Photosynthesis is light limited for all leaves for part of the day, and for some
leaves, those of the lower canopy, for all of the day. For a crop canopy, light-
limited photosynthesis can account for half of total carbon gain, whereas
photosynthesis of forest floor species might always be light limited. The ini-
tial slope of the response of photosynthesis to light defines the maximum
guantum yield or photosynthetic light-use efficien&j)(of a leaf and deter-
mines the rate of C@uptake under strictly light-limiting conditions.

At a given G, @ has been shown to be remarkably constant4rietres-
trial plants regardless of their taxonomic and ecological origins (158). This
may reflect the constancy of the photosynthetic mechanism acrpspes
cies. Even under light-limited conditions net photosynthesis is reduced by the
PCO, which consumes absorbed light energy and releasgsi@bition of
the PCO by elevated Lwill therefore increase light-limited photosynthesis.
This increase may be closely predicted from the kinetic properties of Rubisco
(133). Forest floor vegetation commonly exists close to the light compensa-
tion point (LCP) of photosynthesis. Any increasedncould therefore result
in large increases in net photosynthesis. These predictions are consistent with
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recent observations of more than two- to fourfold increases in net carbon gain
by leaves of both forest floor herbs (CP Osborne, BG Drake & SP Long, un-
published data) and tree seedlings (126) grown in elevatgd §ltu. Calcu-

lated from the kinetic constants of Rubisco, the maximum quantum yield of
photosynthesis at 2€ will increase by 24% when (s doubled. The LCP
should decline reciprocally by 20% if mitochondrial respiration remains un-
changed. IrS. olneyigrown and measured in 70 Pg,@ was 20% greater

than that of plants grown and measured at 36 Pa, close to theoretical expecta-
tion (132). LCP, however, was decreased by 42%, almost double the theoreti-
cal expectation. A similar increase in maximum quantum yield was observed
in the forest floor hertDuchesnea indicahut here LCP decreased by 60%
(CP Osborne, BG Drake & SP Long, unpublished data). These greater-than-
predicted decreases in LCP could only be explained by a decrease in leaf mi-
tochondrial respiration rate. The next section considers the mechanisms and
evidence for such a decrease in respiration rate.

SUMMARY  Theory and experiments show that in rising ghotosynthesis will

be stimulated in both light-limited and -saturated conditions and that the stimu-
lation rises with temperature. Optimization theory suggests that substantial de-
creases in leaf Rubisco content could be sustained under elevatetilé
maintaining an increased rate of leaf photosynthesis, particularly at higher tem-
peratures. Acclimation decreases Rubisco in response to elevated soluble carbo-
hydrate levels. Higher quantum yield at elevated r@duces the light
compensation point. Because of the temperature interaction between Rubisco
activity and elevated & we would expect higher rates of photosynthesis in
tropical and subtropical species as well as shifts in the C:N for foliage.

MITOCHONDRIAL RESPIRATION The earliest reported findings of a direct inhi-
bition of dark respiration by elevated,@re those of Mangin from 1896 (quoted

in 153), although the 5% level employed far exceeds the doubling of currentam-
bient G, It has now been established that the specific rate of dark respiration,
measured either by C@fflux or by O, uptake, decreases about 20% when the
current ambient gis doubled (Table 3, Direct effect; 8, 17, 30, 85, 87, 242).
Two different effects of elevated®ave been suggested (28): an effect that oc-
curs because of the growth or acclimation of the plantin higfe@. 17) and a
readily reversible effect (e.g. 9, 28). These two effects are now referred to as the
indirect and direct effects of elevated @n respiration. Although the mecha-
nism for the indirect effect is not yet clear, the direct effect appears to be caused
by inhibition of the activity of two key enzymes of the mitochondrial electron
transport chain, cytochromeoxidase (Cytox) and succinate dehydrogenase
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(85). We restrict our comments here to this emerging new direction net-O

fects research. For information on other aspects of the interaction of elevated C
and respiration, we refer the reader to the numerous excellent reviews that have
recently appeared (8, 16, 30, 70, 153, 176, 242).

Direct Effect of Elevated £on Dark Respiration

There are many reports of a decrease in respiration within minutes of increase
in C4 (9, 28, 69, 87, 114, 166, 179, 183, 201). Respiration is reduced about
20% for a doubling of the atmospherig Crable 3). This effect has been re-
ported for many different kinds of tissues including leaves, roots, stems, and
even soil bacteria, suggesting that whatever the basic mechanism, it involves
a fundamental aspect of respiration.

MECHANISM OF DIRECT EFFECT OF g ON DARK RESPIRATION A plausible
mechanism underlying the direct effect is the inhibition of enzymes of the mito-
chondrial electron transport system. Experiments with enzymes in vitro showed
that elevated greduces the activity of both Cytox and succinate dehydrogenase
(85, 166, 184a). Under experimental conditions in which Cytox controlled the
overall rate of respiration in isolated mitochondria (148) uptake was inhib-

ited by about 15% (85). Experiments with the enzymes in vitro indicated a direct
inhibition by elevated gon their activity of about 20% for a doubling of the cur-
rent ambient G (85; Figure 3). Measurements ohb©@onsumption on isolated
soybean mitochondria that were fully activated (State 3 conditions, i.e. suffi-
cient ADP) and in which the respiration inhibitor salicylhnydroxamic acid
(SHAM) was used to inhibit the alternative pathway showed that doublijpng C
inhibited the cytochrome (Cyt) pathway approximately 10—-22% (85). By block-
ing the Cyt pathway with potassium cyanide (KCN) and using either succinate

Table 3 Respiration of shoots and leaves in elevatgd C

Respiration R Sp, n References

Direct Effect 0.82 23,53 9, 28, 32, 33, 45, 51, 57, 75, 78, 102,
114,147, 191, 192, 208, 209, 212, 221,
223, 246

Indirect Effect 0.95 17,37 17, 28, 32, 57, 103, 117, 120, 147, 154,

191, 192, 203, 221, 231, 246

aThe direct effect refers to the ratio (R) of rates of dark respiration in the same samples yigien C
creased from the currentambient to the elevated level. The indirect effect refers to the ratio of rate of
dark respiration of plants grown in elevated to the rate of plants grown in current ambighe@
measured at the same background pf@her details as in Table 1.

b Significantly different from 1.0g < 0.05) by Students'test.
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or NADH as electron donors, it was shown that the succinate dehydrogenase
(SDH) in vivo was also inhibited by doubling,@35). The activity of the alter-
native pathway has been shown to be unaffected directly by changing the level
of C4(85, 184a). What is the specific mechanism for inhibition of Cytox by ele-
vated G? Because the effect is time dependent (85; Figure 3) and appears to be
dependent on C&and not HCQ (166), one possibility is a carbamylation reac-
tion. The structure of Cytox contains lysine residues (218), necessary for the
proposed carbamylation.

Another proposed mechanism for the apparent inhibition of respiration is
that elevated gstimulates dark Cefixation (8). Measurements of the respi-
ratory quotient (consumption of femission of CQ) show that this is not a
viable possibility because reduced g£évolution is balanced by an equal re-
duction of G uptake in elevated £3184).

The possibility that C@ inhibition of these enzymes mediates the direct
effect of G, on respiration in plants is supported by measurements on differ-
ent types of plant organelles and tissues. Doubling present atmospheeic C
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Figure 3 Theinhibition of bovine heart Cytochroms@exidase activity in vitro by elevated((85).
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duced in vivo Q uptake by soybean mitochondria, and by extracts from ex-
cised shoots of the sed&e olneyi(84, 85). Experiments in which Cfflux

was used to measure dark respiration showed that doubjjngdDced respi-
ration in excised shoots removed from the field to the lab and from intact
stands in which respiration was determined in the field on these&tige S.
olneyi (58). The importance of this effect for carbon balance of plants and
ecosystems is that it apparently occurs at the most fundamental level of or-
ganization of the mitochondrial electron transport. Thus all respiring tissues
are subject to this effect.

Acclimation of Respiration to Elevated C

Over days to months, the rate of dark respiration of foliage declines. This oc-
curs in parallel with tissue declines in N concentration or protein content that
is energetically costly (25), indicating that this decline reflects decreased de-
mand for energy to sustain growth and/or maintenance. Plants grown in ele-
vated G typically have lower protein and nitrogen concentrations (Table 2).
Several reviews indicate the considerable potential for risiggoQeduce
respiration through effects on tissue composition (8, 46, 242). We reviewed
data on measurements of respiration on leaves of 17 species grown in current
ambient and elevated,CAcclimation of dark respiration was determined by
comparison of the rate of CCefflux or O, consumption measured on sam-
ples of tissue grown in current ambient or elevategdaCa common back-
ground G (Table 3, Indirect effect). In our survey of the literature we found
no overall difference between the specific rates of respiration of shoots and
leaves grown in elevated or ambierg @able 3).

However, some &—but not G—species do show the effects of acclima-
tion to high G. Acclimation of the rate of respiration in thez@lants S.
olneyi, Lindera benzoirand wheat, was due to reduction in activity of enzy-
matic complexes of the mitochondrial electron transport chain (Cytox and
Complex 1), which resulted in diminished capacity of tissue respiration (11,
17). Reduction of the activity of these enzymes was not found in thep€-
ciesSpartina patengl1).

SUMMARY Exposure of plants to elevated Gsually results in a lower rate of
dark respiration. Efflux of C@from stands in the field; from excised leaves,
roots, and stems; and fromp@onsumption of isolated mitochondria, suspen-
sions of cells, and pieces of tissues are reduced about 20% for a doubling of cur-
rent G, This effect appears to be caused mainly by the direct inhibition of the
activity of the respiratory enzymes, cytox, and succinate dehydrogenase by
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COo,. Although acclimation of plants to elevated kas been reported to lower
the rate of dark respiration, this correlates with reduced activity of respiratory
enzymes.

CONCLUSION

Are plants more efficient when grown in elevategd?ifferent definitions

apply to efficiency for water, nitrogen, and light, the three main environ-
mental factors we consider here. However, in each case, greater carbon as-
similation per unit of water lost, per unit nitrogen content, or per unit ab-
sorbed light is consistently found in plants exposed to elevated C

WATERUSEEFFICIENCY Water use efficiency (WUE) means here the ratio of A

to T per unit leaf area. Reducedig elevated Gimproves WUE by reducing
water loss, whether or not photosynthesis is stimulated. In a study of subambient
CO, effects on oats, mustard, and two cultivars of wheat, WUE increased
40-100% as the ambient G@as increased from about 15 to 35 Pa (174). Ina
FACE study in wheat, Gelevated to 55 Pa increased WUE by 76% and 86% in
cotton crops, averaged over two full growing seasons (173). IncreagsaddC
increased WUE in both4and G, wetland species (13). The greater decrease in
stomatal conductance on the upper than on the lower epidermis of leaves in re-
sponse to elevated,€ould further decrease WUE under conditions of natural
convection (167).

NITROGEN USE EFFICIENCY Rubisco, the primary carboxylase of ghotosyn-
thesis, is the most abundant protein in plant leaves and in the biosphere with an
estimated 10 kg per capita (10). Acclimation of photosynthesis to a world with
higher G will mean that less nitrogen will be needed to meet the requirement for
this enzyme, leading to reduction in leaf N concentration and increased C:N (44,
47,99,161, 164, 236). By the definition of nitrogen use efficiency (NUE) we ap-
ply here, the rate of carbon assimilation per unit of N in the foliage, elevated C
clearly increases NUE. Reduction in [N] is not entirely due to dilution but also
represents lower concentration of photosynthetic proteins. In our survey, we
found that tissue N is reduced 15-20% depending on N availability (Table 2). In
afour-year study of a native Australian grass, NUE increased irrespective of the
availability of N in the soil, and this was accompanied by accumulation of car-
bon in the microcosm (138). In along-term study of a Maryland wetland ecosys-
tem, [N] was reduced an average of 18%oirnlneyithroughout eight years of
elevated Gexposure (61) during which time the elevategt@atment stimu-
lated net ecosystem production (NEP). However, while reduction in foliage [N]
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has the benefit of increasing NUE, it also has the consequence that it may reduce
quality or palatability for grazers. The sed@e,olneyigrown in elevated &

was less often the target for egg deposition and larval grazing than in those in
current ambient €(211). Growth in elevated gncreased phenolics and tan-
nins as well as toughness of the tissuesEincalyptussp., and the beetle
Chrysophthartus flaveol®d this material did poorly: The low nutritional status
resulted in lower body weight, reduced digestive efficiencies, and increased
mortality (127). Protein content of wheat grain was reduced in elevai€aoC

100), although itis not clear how this is related to acclimation of photosynthesis
and Rubisco to elevated,C

LIGHT USE EFFICIENCY Despite the many studies of plant growth in elevated
C, few have actually analyzed light use efficiency (LUE; dry matter production
per unitintercepted light) at the stand level. In a microcosm study of wheat, LUE
increased to a maximum at anthesis and declined thereafter (86). Similarly, Pin-
ter et al (173) found that cotton crops grown under FACE at 55 Pa showed a
highly significant increase in LUE of 20% and 22% in consecutive years, re-
gardless of whether the crops were grown with full irrigation or only 50% of the
optimal water supply.

Even with acclimation of photosynthesis to elevated i@ the sedgesS.
olneyi, elevated G stimulated ecosystem carbon uptake (60). In four out of
five studies of native ecosystems in which NEP was measured by gas ex-
change, long-term elevated, Exposure stimulated carbon assimilation (55,
59, 60, 74, 92, 163). The exception was the arctic tussock tundra in which
there was no net increase in NEP in response to elevgiaft€® three weeks
(163). Photosynthesis in the dominant species in this sysiimphorum
vaginatum rapidly adjusted to elevated,@ controlled environment studies
(213). This appears to be one of the few species in which one can demon-
strate complete loss of initial increase in photosynthesis resulting from in-
creasein @

One of the most important findings of the past ten years of work in ele-
vated G is that all but one of the field studies in both crops and native species
photosynthesis per unit of ground area was stimulated. Most of the extra car-
bon from this stimulation must reside in storage tissues such as wood or roots
since there is clear evidence that it does not stimulate the increase in foliage.
The major consequence of this is that we can expect additional carbon to be
accumulated in terrestrial ecosystems ge@htinues to increase.

Improved efficiency generally leads to increased carbon assimilation.
Nevertheless, there are a number of consequences that deserve careful study
because they may not result in positive outcomes for climate, for yield of
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crops, or for plant/insect/animal interactions. Reduced stomatal conductance
results in greater WUE and reduced ET, and it may increase soil water con-
tent. However, reduced transpiration also alters canopy energy balance and
shifts some heat loss from transpiration to convective heat loss. This effect
has important consequences for climate. Incorporating a model of stomatal
response to elevated,@to a coupled biosphere-atmosphere model (SiB2-
GCM) showed that decreasegland latent heat transfer will cause a warming

of the order of 1-2C over the continents (198) in addition to warming from
the CQ, greenhouse effect. Implicit in this development is that any loss of
photosynthetic capacity, through acclimation, would lead to further de-
creased g(198). These studies emphasize the need for an improved mecha-
nistic understanding of stomatal response to atmospheric change.

Whereas the effects of Gn these separate physiological processes oc-
cur via independent mechanisms, there are interactions among all three of
them. Acclimation of photosynthesis reduces tissue [N], which may reduce
the demand for energy generated by respiration. Reductiory mhgroves
water balance, which delays the onset of midday water stress and extends the
period of most active photosynthesis; reduced ET increases soil water content
and leads to increased N mineralization.

There are problems in moving across scales in the interpretation of pro-
cesses on a global scale based upon effects at the molecular level. Yet the re-
duction of stomatal conductance, the improvement in the efficiency of photo-
synthesis, and the inhibition of the activity of respiratory enzymes are pri-
mary mechanisms by which terrestrial ecosystems will respond to rising
atmospheric carbon dioxide.
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